Web程序开发基础

使用样式表美化页面1

序言

。。。。。

第一章　HTML基本结构及实体
本章目标：了解 HTML 文档的基本结构

掌握HTML结构标签<html><head><title><body>
掌握HTML字符实体
本章重点：了解 HTML 文档的基本结构

本章难点：HTML字符实体的使用

1、 HTML 文档的基本结构

HTML文件是什么？

· HTML表示超文本标记语言（Hyper Text Markup Language）。

· HTML文件是一个包含标记的文本文件。

· 这些标记保速浏览器怎样显示这个页面。

· HTML文件必须有htm或者html扩展名。

· HTML文件可以用一个简单的文本编辑器创建。
想不想尝试一下？

假如你运行的是windows系统，打开记事本，在其中输入以下文本：
<html>
<head>
 <title>Title of page</title>
</head>
 <body>
 This is my first homepage.
 This text is bold
 </body>
</html>
将此文件保存为“mypage.htm”。

启动浏览器。在文件菜单中选择“打开”（或者“打开页面”），这时将出现一个对话框。选择“浏览”（或者“选择文件”），定位到你刚才创建的HTML文件——“mypage.htm”，选择它，单击“打开”。然后在对话框中，你将看到这个文件的地址，比如说：“C:\MyDocuments\mypage.htm”。单击“确定”，浏览器将显示此页面。
[image: image1.png]=lolx|

IHEO @EQ FEW KW TAD #Ho

| &

OO -3 @ G| Jax Jovax @]

HtE ©) [0 Documents and Settings\hininistrat v] () %3 | BEIE >

B

[

Google

This is ny first homepage. This text is bold

|

| [meoem

4

例子解释:

HTML文档中，第一个标签是<html>。这个标签告诉浏览器这是HTML文档的开始。HTML文档的最后一个标签是</html>，这个标签告诉浏览器这是HTML文档的终止。

在<head>和</head>标签之间文本的是头信息。在浏览器窗口中，头信息是不被显示的。

在<title>和</title>标签之间的文本是文档标题，它被显示在浏览器窗口的标题栏。

在<body>和</body>标签之间的文本是正文，会被显示在浏览器中。

在和标签之间的文本会以加粗字体显示。
关于HTML编辑器：

用一些所见即所得的编辑器，比如frontpage，dreamwaver，你可以很容易创建一个页面，而不需要在纯文本中编写代码。

但是假如你想成为一名熟练的网络开发者，我们强烈推荐你用纯文本编辑器编写代码，这有助于学习HTML基础。
常见问题:

问：我编写完了HTML文件，但是不能在浏览器中看见结果，为什么？
答：请确认你保存了文件，并且使用了正确的文件名和扩展名，例如：“c:\mypage.htm”，并且确认你用浏览器打开时使用同样的文件名。

问：我编辑了HTML文件，但是修改结果并没有在浏览器中显示，为什么？
答：浏览器缓存了你的页面，所以它不需要两次读取同样的页面。你修改了这个页面，浏览器并不知道。请使用“刷新/重载”按钮来强迫浏览器读取编辑过的页面。
HTML元素：

HTML文档是由HTML元素组成的文本文件。
HTML元素是预定义的正在使用的HTML标签。
HTML标签：

HTML标签用来组成HTML元素。

HTML标签两端有两个包括字符：“<”和“>”,这两个包括字符被称为角括号。

HTML标签通常成对出现，比如和。一对标签的前面一个是开始标签，第二个是结束标签,在开始和结束标签之间的文本是元素内容。

HTML标签是大小写无关的，跟表示的意思是一样的。
HTML元素：

 回忆一下上面的HTML例子：
<html>
<head>
 <title>Title of page</title>
</head>
 <body>
 This is my first homepage.
 This text is bold
 </body>
</html>
下面是一个HTML元素：
This text is bold
此HTML元素以开始标签起始， 内容是：This text is bold，以结束标签中止。标签的目的是定义一个需要被显示成粗体的HTML元素。

下面也是一个HTML元素：
<body>
This is my first homepage.
This text is bold
</body>
此HTML标签以开始标签<body>起始，终止于结束标签</body>。<body>标签的目的是定义一个HTML元素，使其包含HTML文档的主体。
为什么使用小写标签？

我们刚说过，HTML标签是大小写无关的：跟含义相同。当你上网的时候，你会注意到多数教程在示例中使用大写的HTML标签，我们总是使用小写标签。为什么？

假如你想投入到下一代HTML中，你应该开始使用小写标签。W3C在他们的HTML4建议中提倡使用小写标签，XHTML（下一代HTML）也需要小写标签。
标签属性：

标签可以拥有属性。属性能够为页面上的HTML元素提供附加信息。

标签<body>定义了HTML页面的主体元素。使用一个附加的bgcolor属性，你可以告诉浏览器：你页面的背景色是红色的，就像这样：
<body bgcolor="red">
标签<table>定义了一个HTML表格。使用一个附加的border属性，你可以告诉浏览器：这个表格是没有边框的，代码是：
<table border="0">
属性通常由属性名和值成对出现，就像这样：name="value"。属性通常是附加给HTML元素的开始标签的。
引号样式：

属性值应该被包含在引号中。双引号是最常用的，但是单引号也可以使用。
在很少情况下，比如说属性值本身包含引号，使用单引号就很必要了。
比如：name='John "ShotGun" Nelson'。
注意：中文引号跟英文引号是不一样的。上面所指的引号都是英文状态下的引号。
2、 HTML实体
有些字符，比如说“<”字符，在HTML中有特殊的含义，因此不能在文本中使用。

想要在HTML中显示一个小于号“<”，需要用到字符实体。
字符实体：

在HTML中，有些字符拥有特殊含义，比如小于号“<”定义为一个HTML标签的开始。假如我们想要浏览器显示这些字符的话，必须在HTML代码中插入字符实体。

一个字符实体拥有三个部分：一个and符号（&），一个实体名或者一个实体号，最后是一个分号（;）

想要在HTML文档中显示一个小于号，我们必须这样写：<或者<

使用名字相对于使用数字的优点是容易记忆，缺点是并非所有的浏览器都支持最新的实体名，但是几乎所有的浏览器都能很好地支持实体号。

注意：实体名是大小写敏感的。

下面这个例子能够让你针对HTML实体实践一下。
<html>

<body>

<p>This is a character entity: {</p>

</body>

</html>
运行代码，结果如下：

[image: image2.png]E1 TStore:C:\Docunents and Settings\Administouuli[=[p|

“This is a character eniity: (

AN K

e I P,]

不可拆分的空格

在HTML中，最常见的字符实体就是不可拆分空格。

通常，HTML会合并你文档中的空格。假如在你的HTML文本中连续写了10个空格，其中9个会被去掉。想要在HTML中插入空格，可以使用实体：
最常用的字符实体：

[image: image3.png]BFER ik EX EXS)
TAFHHEE anbsp. a#to0,
4F a1t a0,
*F aet a2
wdff an: =
318 aquot, e
315 =

其他一些常用的字符实体：

[image: image4.png]B i) e
B B feent stz
[E] sgound s
¥ AR aen s
s B et water
© [s i,
® =l e wire
x B #times: 84215
+ BS #divide; 247,

第二章 HTML基本元素的运用
本章目标：掌握下列标签：

段落相关标签<p>
<hr>
格式化相关标签<small><sub><sup><pre>

列表相关标签
图片相关标签
超链相关标签<a>
本章重点：段落相关标签，超链标签
本章难点：超链相关标签<a>
1、 段落相关标签
标题元素：

标题元素由标签<h1>到<h6>定义。<h1>定义了最大的标题元素，<h6>定义了最小的。
<h1>This is a heading</h1>
<h2>This is a heading</h2>
<h3>This is a heading</h3>
<h4>This is a heading</h4>
<h5>This is a heading</h5>
<h6>This is a heading</h6>
运行代码，结果如下：

[image: image5.png]im0z el

IHEO @®E® FEQ GEE IAD Mo | &
HtE ©) [\Docments snd Settings\Ainini strator\BLv] () %63 | 86

This is a heading

This is a heading
This is a heading

This is a heading
This is a heading

Thix ix n keadine

HTML自动在一个标题元素前后各添加一个空行。
段落：

段落是用<p>标签定义的。
<p>This is another paragraph</p>
运行代码，结果如下：

[image: image6.png]SR =

aHe @E® FEQ KEE TR Bho |
1t @) [Docments and Settings\hininiztretr] () $631 | 862 >
|

This is another paragraph
=

HTML自动在一个段落前后各添加一个空行。
换行：

当需要结束一行，并且不想开始新段落时，使用
标签。
标签不管放在什么位置，都能够强制换行。
<p>This
 is a para
graph with line breaks</p>
运行代码，结果如下：

[image: image7.png]Do a -1o) x|
aHE ®E® FEQ K@@ TR M| 0
1 ©) [0 Documents and Setting=\iniv] () %3 | R >

This :1

is a para
graph with line breaks =~

标签是一个空标签，它没有结束标记。
2、 格式化相关标签

格式化文字：
<html>

<body>

This text is bold

This text is strong

<big>

This text is big

</big>

This text is emphasized

<i>

This text is italic

</i>

<small>

This text is small

</small>

This text contains

<sub>

subscript

</sub>

This text contains

<sup>

superscript

</sup>

</body>

</html>
运行代码，结果如下：

[image: image8.png]@ESTTStore:C:\Documents and Settings\Administratost

This text is bold
This text s strong
This text is big

This text is emphasized
This text is italic

This text s small

This test COMARS et

‘This text contains UPEseript

=lolx|

e

NI

这个例子说明了在HTML里面可以怎样格式化文本。
3、 列表相关标签
无序列表：

无序列表是一个项目的序列。各项目前加有标记（通常是黑色的实心小圆圈）。
无序列表以标签开始。每个列表项目以开始。

Coffee
Milk

运行代码，结果如下：

[image: image9.png]o Coffae
o Bl

无序列表的项目中可以加入段落、换行、图像，链接，其他的列表等等。
有序列表：

有序列表也是一个项目的序列。各项目前加有数字作标记。
有序列表以标签开始。每个列表项目以开始。

Coffee
Milk

运行代码，结果如下：

[image: image10.png]2

Coffes
Wilk

更多示例：
有序列表的不同类型：
<html>

<body>

<h4>Numbered list:</h4>

Apples

Bananas

Lemons

Oranges

<h4>Letters list:</h4>

<ol type="A">

Apples

Bananas

Lemons

Oranges

<h4>Lowercase letters list:</h4>

<ol type="a">

Apples

Bananas

Lemons

Oranges

<h4>Roman numbers list:</h4>

<ol type="I">

Apples

Bananas

Lemons

Oranges

<h4>Lowercase Roman numbers list:</h4>

<ol type="i">

Apples

Bananas

Lemons

Oranges

</body>

</html>
运行代码，结果如下：

[image: image11.png]TStore:C:\Documents and Settings\admin\Sf\GRS\ITNLS chas Ry =P

Numbered

Apples
Bananas
Lemons
Oranges

e

Letters list:

Apples
Bananas
Lemons
Oranges

Yowe

Lowercase letters list:

Apples
Bananas
Lemons
Oranges

an o

Roman numbers list:

Apples
Bananas
Lemons
Oranges

LHA~

Lowercase Roman numbers list:

Apples
Bananas
Lemons
in. Oranges ||

I
T [S#mmm

B

这个例子显示了有序列表的不同类型。

无序列表的不同类型：
<html>

<body>

<h4>Disc bullets list:</h4>

<ul type="disc">

Apples

Bananas

Lemons

Oranges

<h4>Circle bullets list:</h4>

<ul type="circle">

Apples

Bananas

Lemons

Oranges

<h4>Square bullets list:</h4>

<ul type="square">

Apples

Bananas

Lemons

Oranges

</body>

</html>
运行代码，结果如下：

[image: image12.png]Disc bullets list:

Apples
« Bananas
o Lemons
Oranges

Circle bullets list:

o Apples
o Bananas
o Lemons
o Oranges

Square hullets list:

Apples
= Bananas
= Lemons
= Oranges

e

NI

这个例子显示了无序列表的不同类型。
4、 图片相关标签
Img标签和src属性：

在HTML里面，图像是由标签定义的。
是空标签，意思是说，它只拥有属性，而没有结束标签。
想要在页面上显示一个图像，需要使用src属性。“src”表示“源”的意思。“src”属性的值是所要显示图像的URL。
插入图像的语法：
[image: image13.png]

URL指向图像存储的地址。网站“www.w3schools.com”子目录“images”中的图像“boat.gif”的URL如下： “http://www.w3schools.com/images/boat.gif”。

当浏览器在文档中遇到img标签时，就放置一个图像。如果把img标签放在两个段落之间，就会先显示一个段落，然后是这个图像，最后是另外一个段落。
alt属性：

alt属性用来给图像显示一个“交互文本”。alt属性的值是由用户定义的。
[image: image14.png]

“alt”属性在浏览器装载图像失败的时候告诉用户所丢失的信息，此时，浏览器显示这个“交互文本”来代替图像。给页面上的图像都加上alt属性是一个好习惯，它有助于更好地显示信息，而且，对纯文本浏览器很有用。

基本注意点——有用的技巧:

如果一个HTML文档包含10个图像，那么为了正确显示这个页面，需要加载11个文件。加载图像是需要时间的，所以请谨慎使用图像。
更多示例：

调整图像大小：
<html>

<body>

<p>

</p>

<p>

</p>

<p>

</p>

<p>

You can make a picture larger or smaller changing the values in the "height" and "width" attributes of the img tag.

</p>

</body>

</html>
运行代码，结果如下：

[image: image15.png]You can make a picture larger or smaller changing the values in the *height"
and "width" afiributes of the img tag =

I 7

背景图像：
<html>

<body background="./images/background.jpg">

<h3>Look: A background image!</h3>

<p>Both gif and jpg files can be used as HTML backgrounds.</p>

<p>If the image is smaller than the page, the image will repeat itself.</p>

</body>

</html>
运行代码，结果如下：

[image: image16.png]Look: A background image!

Both gif and jpg files can be vsed as HTML backgrounds

Tfthe image is smaller than the page, the image will repeat itsclf

S I 7

图像链接：
<html>

<body>

<p>

You can also use an image as a link:

</p>

</body>

</html>
运行代码，结果如下：

[image: image17.png]TStore:C:\Docunents and Settings\admin\e\SRRNNI (=]}

You can also use an image as a link: @00

|
7

[& [T 3 =abem

5、 超链相关标签
锚标签和href属性：

HTML使用锚标签（<a>）来创建一个连接到其他文件的链接。锚可以指向网络上的任何资源：HTML页面，图像，声音，影片等等。

创建一个锚的语法：
[image: image18.png]<a href="wrlText to be displayed</s>

锚可以指向网络上的任何资源：HTML页面，图像，声音，影片等等。

标签<a>被用来创建一个链接指向的锚，href属性用来指定连接到的地址，在锚的起始标签<a>和结束标签中间的部分将被显示为超级链接。

这个锚定义了一个到W3Schools的链接：
[image: image19.png]

上面这段代码在浏览器中显示的效果如下：
[image: image20.png]Visit ¥3Schools!

target属性：

使用target属性，你可以定义从什么地方打开链接地址。
下面这段代码打开一个新的浏览器窗口来打开链接：
[image: image21.png]<o href="http://wev. wBschools. con/* target="_blank">¥isit #3Schools!

锚标签和name属性

name属性用来创建一个命名的锚。使用命名锚以后，可以让链接直接跳转到一个页面的某一章节，而不用用户打开那一页，再从上到下慢慢找。

下面是命名锚的语法：
[image: image22.png]

你可以为锚随意指定名字，只要你愿意。下面这行代码定义了一个命名锚：
[image: image23.png]<a nane="tips"Mseful Tips Section

你应该注意到了：命名锚的显示方式并没有什么与众不同的。

想要直接链接到“tips”章节的话，在URL地址的后面加一个“#”和这个锚的名字，就像这样：
[image: image24.png]Junp to the Useful Tips
Section

一个链接到本页面中某章节的命名锚是这样写的：
[image: image25.png]Junp to the Useful Tips Section</s>

基本注意点——有用的技巧：

尽量在子目录路径后面加一个左斜杠。假如你像下面这样写：href="http://www.w3schools.com/html"，将会产生向服务器产生两个HTTP请求，因为服务器会在后面追加一个左斜杠，产生一个新的请求，就像这样：href="http://www.w3schools.com/html/"。

命名锚通常用来在大型文档的开头创建章节表。这个页面的每个章节被加上一个命名锚，到这些锚的链接被放在页面的顶端。

如果浏览器无法找到指定的命名锚，它将转到这个页面的顶部，而不显示任何错误提示。
更多示例：

在新浏览器窗口中打开链接：
<html>

<body>

Last Page

<p>

If you set the target attribute of a link to "_blank",

the link will open in a new window.

</p>

</body>

</html>
运行代码，结果如下：

[image: image26.png]ITStore:C:\Docunents and Settings\admin\SHE\GS =10/ x|

a5t Dage

T you set the targe afribute of a link to *_blank”, the link wil open in a new
window.

NI

ol BISTTStora:C: \Docunent sX20andte

L

单击超连接，打开一个新窗口：

[image: image27.png]Docusents and ngs\ednin\Aifl\Lestpage b osoft In (ol x|
IO @ED SEQ KO TAD BHO | &

O © [2 G| Pax Yewar @ 3 & -) °
1 @ [B] c: \Docunents and Sattings\adnin\ BE Lastpags. hin EEEEEE

This is last Page

|
T T [e i

链接到本页面的某个位置：
<html>

<body>

<p>

See also Chapter 4.

</p>

<p>

<h2>Chapter 1</h2>

<p>This chapter explains ba bla bla</p>

<h2>Chapter 2</h2>

<p>This chapter explains ba bla bla</p>

<h2>Chapter 3</h2>

<p>This chapter explains ba bla bla</p>

<h2>Chapter 4</h2>
<p>This chapter explains ba bla bla</p>
</body>

</html>
运行代码，结果如下：

[image: image28.png]See also Chapter 4.
Chapter 1

‘This chapter explains ba bla bla

Chapter 2

‘This chapter explains ba bla bla

Chapter 3

‘This chapter explains ba bla bla

Chapter 4

I

NIEE

单击超连接，

[image: image29.png]Chapter 4

|
‘This chapter explains ba bla bla |
4

第三章　用HTML创建表格
本章目标：了解掌握表格的基本结构<table><tr><th><td>
掌握跨行、跨列属性colspan rowspan
掌握表格相关修饰属性border width height bgcolor background height cellpadding cellspacing
本章重点：掌握表格的基本结构及相关属性
本章难点：掌握跨行、跨列属性colspan rowspan
1、 HTML 表格
表格:

表格是用<table>标签定义的。表格被划分为行（使用<tr>标签），每行又被划分为数据单元格（使用<td>标签）。td表示“表格数据”（Table Data），即数据单元格的内容。数据单元格可以包含文本，图像，列表，段落，表单，水平线，表格等等。想不想尝试一下？

[image: image30.png]Ctdrow 1, edll 148>
Ctdrow 1 eell 2/td>

Cdron 2, edll 148>
Ctdrow 2, eell 2/td>
e

rable>

在浏览器中显示如下：
[image: image31.png]vou 1, cell 1 [rov 1, eell 2

ron2, cll | [rov2, cell 2

表格和border属性：

[image: image32.png]<table borde:
oy
CdRow 1, edll 148>
CDRow 1] eell 248>
e

rable>

17>

如果不指定border属性，表格将不显示边框。有时候这很有用，但是多数时候我们希望显示边框。

表格头：

表格头使用<th>标签指定。

[image: image33.png]<table borde
<>

B Heading</th
hoAnother Heading/th>
Gur>

>

Ctdrow 1, edll 148>
Ctdrow 1 eell 2/td>
e

>

Cdron 2, edll 148>
Ctdrow 2, eell 2/td>
e

rable>

17>

在浏览器中显示如下：
[image: image34.png]Meading Another Heading

vou 1, cell 1 [rov 1, eell 2

ron2, cll | [rov2, cell 2

表格中的空单元格

在多数浏览器中，没有内容的单元格显示得不太好。
[image: image35.png]<table borde:
<>
Ctdrow 1, edll 148>
Ctdrow 1 eell 2/td>
e

>

Cdron 2, edll 148>
QDD

e

rable>

17>

在浏览器中显示如下：
[image: image36.png]vou 1, cell 1 [rov 1, eell 2

ron 2, cell 1

注意一下空单元格的边框没有显示出来。为了避免这个，可以在空单元格里加入不可分空格来占位，这样边框能正常显示。
[image: image37.png]<table borde:
<>
Ctdrow 1, edll 148>
Ctdrow 1 eell 2/td>
e

>

Cdron 2, edll 148>
<tdambsp 1d>

e

rable>

17>

在浏览器中显示如下：
[image: image38.png]vou 1, cell 1 [rov 1, eell 2

ron 2, cell 1

基本注意点——有用的技巧
通常很少使用<thead>，<tbody>，<tfoot>标签，因为浏览器对它们的支持不好。希望这个在XHTML的未来版本中得到改变。
更多示例：
没有边框的表格：
<html>

<body>

<h4>This table has no borders:</h4>

<table>

<tr>

<td>100</td>

<td>200</td>

<td>300</td>

</tr>

<tr>

<td>400</td>

<td>500</td>

<td>600</td>

</tr>

</table>

<h4>And this table has no borders:</h4>

<table border="0">

<tr>

<td>100</td>

<td>200</td>

<td>300</td>

</tr>

<tr>

<td>400</td>

<td>500</td>

<td>600</td>

</tr>

</table>

</body>

</html>
[image: image39.png]TStore:C:\Docunents and Settings\admin\SS\GR{SNMTNORRIN =] 11|

This table has no borders:

100 200 300
400 500 600

And this table has no borders:

100 200 300
400 500 600

AN K

[El= T[S =abem

表格头：
<html>

<body>

<h4>Table headers:</h4>

<table border="1">

<tr>

<th>Name</th>

<th>Telephone</th>

<th>Telephone</th>

</tr>

<tr>

<td>Bill Gates</td>

<td>555 77 854</td>

<td>555 77 855</td>

</tr>

</table>

<h4>Vertical headers:</h4>

<table border="1">

<tr>

<th>First Name:</th>

<td>Bill Gates</td>

</tr>

<tr>

<th>Telephone:</th>

<td>555 77 854</td>

</tr>

<tr>

<th>Telephone:</th>

<td>555 77 855</td>

</tr>

</table>

</body>

</html>
[image: image40.png]Table heades

Name

[Bill Gates

Telephone

Telephone
55577 854

55577855

Vertical headers:

(First Name: [Bill Gates

Telephone:

55577854
55577855

Telephone:

[E=%

有标题的表格：
<html>

<body>

<h4>

This table has a caption,and a thick border:

</h4>

<table border="6">

<caption>My Caption</caption>

<tr>

<td>100</td>

<td>200</td>

<td>300</td>

</tr>

<tr>

<td>400</td>

<td>500</td>

<td>600</td>

</tr>

</table>

</body>

</html>
[image: image41.png]TStore:C:\Documents and Settings\adnin\SLENE f0

This table has a caption,and a thick horder:

My Caption

100 200[300
400500600

NI

EE I P,]

单元格跨行（列）的表格：
<html>

<body>

<h4>Cell that spans two columns:</h4>

<table border="1">

<tr>

<th>Name</th>

<th colspan="2">Telephone</th>

</tr>

<tr>

<td>Bill Gates</td>

<td>555 77 854</td>

<td>555 77 855</td>

</tr>

</table>

<h4>Cell that spans two rows:</h4>

<table border="1">

<tr>

<th>First Name:</th>

<td>Bill Gates</td>

</tr>

<tr>

<th rowspan="2">Telephone:</th>

<td>555 77 854</td>

</tr>

<tr>

<td>555 77 855</td>

</tr>

</table>

</body>

</html>
[image: image42.png]=10l
r.... A

Cell that spans two colummns:

Name Telephone
[Bill Gates 555 77 854|555 77 855

Cell that spans two rows:

(First Name: [Bill Gates

55577854
55577855

Telephone:

AN K

CE I P,]

表格内的其他标签：
<html>

<body>

<table border="1">

<tr>

<td>

<p>This is a paragraph</p>

<p>This is another paragraph</p>

</td>

<td>This cell contains a table:

<table border="1">

<tr>

<td>A</td>

<td>B</td>

</tr>

<tr>

<td>C</td>

<td>D</td>

</tr>

</table>

</td>

</tr>

<tr>

<td>This cell contains a list

apples

bananas

pineapples

</td>

<td>HELLO</td>

</tr>

</table>

</body>

</html>
[image: image43.png]TStore:C:\Docuents and Settings\adain\SiHAGE O\

(This cell contains a table:

[&]B]

This is another paragraph [D)

This is a paragraph

(This cell contains a list

o apples —
+ bananas

+ pineapples

NI

EED T[S =abem

给表格增加背景色或者背景图像：
<html>

<body>

<h4>A background color:</h4>

<table border="1" bgcolor="red">

<tr>

<td>First</td>

<td>Row</td>

</tr>

<tr>

<td>Second</td>

<td>Row</td>

</tr>

</table>

<h4>A background image:</h4>

<table border="1" background="/images/bgdesert.jpg">

<tr>

<td>First</td>

<td>Row</td>

</tr>

<tr>

<td>Second</td>

<td>Row</td>

</tr>

</table>

</body>

</html>
[image: image44.png]TStore:C:\Documents and Settings\adain\SLEINGF\

Abackground color:

Abackground image:

(First

Row

Second

Row

=lolx|

IS

e

NI

这个例子说明了如何给表格增加背景。
<html>

<body>

<h4>Cell backgrounds:</h4>

<table border="1">

<tr>

<td bgcolor="red">First</td>

<td>Row</td>

</tr>

<tr>

<td background="/images/bgdesert.jpg">Second</td>

<td>Row</td>

</tr>

</table>

</body>

</html>
[image: image45.png]TStore:C:\Docuents and Settings\adain\SiHAGE O\

T |

Cell hackgrounds:

NI

EE I P,]

这个例子说明了如何给一个或多个单元格增加背景。
cellpadding属性：
<html>

<body>

<h4>Without cellpadding:</h4>

<table border="1">

<tr>

<td>First</td>

<td>Row</td>

</tr>

<tr>

<td>Second</td>

<td>Row</td>

</tr>

</table>

<h4>With cellpadding:</h4>

<table border="1" cellpadding="10">

<tr>

<td>First</td>

<td>Row</td>

</tr>

<tr>

<td>Second</td>

<td>Row</td>

</tr>

</table>

</body>

</html>
[image: image46.png]Without cellpadding:

First [Row,

Second[Row

With cellpadding:

First Row

Second | Row

N0 K

ISESS T T [e

这个例子说明了如何使用cellpadding属性在表格内容和边框之间留出更多空白。
cellspacing属性：
<html>

<body>

<h4>Without cellspacing:</h4>

<table border="1">

<tr>

<td>First</td>

<td>Row</td>

</tr>

<tr>

<td>Second</td>

<td>Row</td>

</tr>

</table>

<h4>With cellspacing:</h4>

<table border="1" cellspacing="10">

<tr>

<td>First</td>

<td>Row</td>

</tr>

<tr>

<td>Second</td>

<td>Row</td>

</tr>

</table>

</body>

</html>
[image: image47.png]TStore:C:\Docuents and Settings\adain\SiHAGE O\ o x|

Without cellspacing:

First [Row,

Second[Row

With cellspacing:

First | Row
Second [Row

NI

EE I P,]

这个例子说明了如何使用cellspacing属性来增加单元格间距。
给单元格内容设置对齐方式：
<html>

<body>

<table width="400" border="1">

<tr>

<th align="left">Money spent on....</th>

<th align="right">January</th>

<th align="right">February</th>

</tr>

<tr>

<td align="left">Clothes</td>

<td align="right">$241.10</td>

<td align="right">$50.20</td>

</tr>

<tr>

<td align="left">Make-Up</td>

<td align="right">$30.00</td>

<td align="right">$44.45</td>

</tr>

<tr>

<td align="left">Food</td>

<td align="right">$730.40</td>

<td align="right">$650.00</td>

</tr>

<tr>

<th align="left">Sum</th>

<th align="right">$1001.50</th>

<th align="right">$744.65</th>

</tr>

</table>

</body>

</html>
[image: image48.png]|

Money spent on... January| February
Clothes $241.10 $50.20
Make-Up $30.00 $44.45
Food $730.40 $650.00
Sum $1001.50 $744.65

|

@z [T [Fevetn 4

这个例子说明了如何使用“align”属性来设置单元格的对齐方式，让表格好看一些。
第四章　HTML表单页面的运用
本章目标：掌握表单基本结构<form>
掌握各种表单元素
能理解post和get两种提交方式的区别
本章重点：掌握各种表单元素
本章难点：post和get两种提交方式的区别
1、 HTML表单
表单：

表单是一个能够包含表单元素的区域。

表单元素是能够让用户在表单中输入信息的元素（比如文本框，密码框，下拉菜单，单选框，复选框等等）。

表单是用<form>元素定义的：
[image: image49.png]<forn>
Sinput>
Cinput>
eorn>

Input：

最常用的表单标签是<input>标签。Input的类型用type属性指定。最常用的input类型解释如下：

文本框：在表单中，文本框用来让用户输入字母、数字等等。
[image: image50.png]<forn>

First nane
CGnput type"text” nane="Eirstnane’>
>

Last nane.

Cinput type"text” nane="Lastnana’>

eorn>

在浏览器中显示如下：
[image: image51.png]

单选按钮：当需要用户从有限个选项中选择一个时，使用单选按钮。
[image: image52.png]<forn>
Ginput typ
>
Cinput_ typ
eorn>

vadio” namessex values"maleMele

adio” names“sex values"Fanale Fenale

在浏览器中显示如下：
[image: image53.png]nae
© Fensle

注意，各选项中只能选取一个。
复选框：当需要用户从有限个选项中选择一个或多个时，使用复选框。
[image: image54.png]<Eorn>
Cinput type="checkbox” nane="bike">
T have s bike

>

Cinput type="checkbox” nane="car”>
I have s car

eornd

在浏览器中显示如下：
[image: image55.png]I 1 have o bike

T 1 heve o car

表单的action属性和提交按钮：当用户点击提交按钮的时候，表单的内容会被提交到其他文件。表单的action属性定义了所要提交到的目的文件，该目的文件收到信息后通常进行相关的处理。
[image: image56.png]<Forn nane:
Vsernane
Gnput typ
CGinput_ t7p
eorn>

在浏览器中显示如下：
[image: image57.png]

如果在上面这个文本框中输入一些字符，按下提交按钮以后，输入的字符将被提交到页面“action.asp”。
更多示例：
简单的下拉列表：
<html>

<body>

<form>

<select name="cars">

<option value="volvo">Volvo

<option value="saab">Saab

<option value="fiat">Fiat

<option value="audi">Audi

</select>

</form>

</body>

</html>
[image: image58.png]

这个例子说明了在HTML页面如何创建下拉列表。下拉列表是可以选择的列表。
预选的下拉列表：
<html>

<body>

<form>

<select name="cars">

<option value="volvo">Volvo

<option value="saab">Saab

<option value="fiat" selected>Fiat

<option value="audi">Audi

</select>

</form>

</body>

</html>
[image: image59.png]2 ak:@NSTTStore:C:\Documents and Settings\.- -

P

这个例子说明了如何创建一个含有预先选定元素的下拉列表。
文本域：
<html>

<body>

<p>

This example demonstrates a text-area.

</p>

<textarea rows="10" cols="30">

The cat was playing in the garden.

</textarea>

</body>

</html>
[image: image60.png]2 ak:@NSTTStore:C: \Docunents and

‘This example demonsirates a text-area

The cat vas playing in the
garden.

&) =t PE]

这个例子说明了如何创建文本域（多行文本），用户可以在其中输入文本。在文本域中，字符个数不受限制。
创建按钮：
<html>

<body>

<form>

<input type="button" value="Hello world!">

</form>

</body>

</html>
[image: image61.png]a

Hello warld!
B

PR

这个例子说明了如何创建按钮。按钮上的文字可以自己定义。
数据周围的标题边框：
<html>

<body>

<fieldset>

<legend>

Health information:

</legend>

<form>

Height<input type="text" size="3">

Weight<input type="text" size="3">

</form>

</fieldset>

<p>

If there is no border around the input form, your browser is too old.

</p>

</body>

</html>
[image: image62.png]2 ak:@ESTTStore:C:\Docunents and Settingsiada.

Health information:

Height Weight

Tfthere is no border around the input form, your browser is too old

EED PE

I

这个例子说明了如何在数据周围画带有标题的边框。
从表单发送电子邮件：
<html>

<body>

<form action="MAILTO:someone@w3schools.com" method="post"
enctype="text/plain">

<h3>This form sends an e-mail to W3Schools.</h3>

Name:

<input type="text" name="name" value="yourname" size="20">

Mail:

<input type="text" name="mail" value="yourmail" size="20">

Comment:

<input type="text" name="comment" value="yourcomment" size="40">

<input type="submit" value="Send">

<input type="reset" value="Reset">

</form>

</body>

</html>
[image: image63.png]2 ak:@NSITStore:C:\Docunents and Settings\admin\...

This form sends an e-mail to W3Schools.

Name
youmame
Mait
yourmail

Comment:

yourcomment

这个例子说明了如何从一个表单发送电子邮件
第五章　使用样式表美化页面1
本章目标：掌握在网页中使用CSS的方法

熟悉 CSS 的不同选择器的使用方法

熟悉字体属性：font-family，font-size，font-style，

font-weight
熟悉文本属性： text-align，text-indent，text-decoration，

text-transform，vertical-align，word-spacing，

letter-spacing

本章重点：掌握在网页中使用CSS的方法
本章难点：文本属性，字体属性
1、 CSS的工作原理
在这一节，你将学习如何制作自己的第一个样式表。你将了解基本的CSS模型，以及在HTML文档里使用CSS所必需的代码。

级联样式表（CSS）里用到的许多CSS属性都与HTML属性相似，所以，假如你熟悉采用HTML进行布局的话，那么这里的许多代码你都不会感到陌生。我们先来看一个具体的例子。
基本的CSS语法：

比方说，我们要用红色作为网页的背景色：
用HTML的话，我们可以这样：
[image: image64.png]<body bgcolor="#FF0000">

用CSS的话，我们可以这样获得同样的效果：
[image: image65.png]body {background-color: #FF0000;}

你会注意到，HTML和CSS的代码颇有几分相似。上例也向你展示了基本的CSS模型：
[image: image66.png]selector {property: value;}

» N

@
i Leane
REES background-color
FmES REETLR
BEEAT g “HFFO000"

BEHTMLAR pnmTes feomee) .
PRl mmem
“backgoudcalor”
==,

但是把CSS代码放在哪里呢？这正是我们下面要讲的
为一个HTML文档应用CSS：
为HTML文档应用CSS，有三种方法可供选择。下面对这三种方法进行了概括。我们建议你对第三种方法（即外部样式表）予以关注。
方法1：行内样式表（style属性）
为HTML应用CSS的一种方法是使用HTML属性style。我们在上例的基础之上，通过行内样式表将页面背景设为红色：
[image: image67.png]<htnl>
<head>
<titledBl F</eitle>
</head>
<body style="background-color: #FF0000;">
<R TERL BRI/ >
<body>
</ntnl>

方法2：内部样式表（style元素）
为HTML应用CSS的另一种方法是采用HTML元素style。比如像这样：
[image: image68.png]<htnl>
<head>
<titledBl F</eitle>
<style type="text/css”>
body {background-color: #FF0000;}
<Istyle>
</head>
<body>
<A TERL BRI/ >
<body>
</ntnl>

方法3：外部样式表（引用一个样式表文件）
我们推荐采用这种引用外部样式表的方法。在本教程之后的例子中，我们将全部采用该方法。外部样式表就是一个扩展名为css的文本文件。跟其他文件一样，你可以把样式表文件放在Web服务器上或者本地硬盘上。例如，比方说你的样式表文件名为style.css，它通常被存放于名为style的目录中。就像下面这样：
[image: image69.png]i htminet
[defaut htm
& Cstyle
[style.css

现在的问题是：如何在一个HTML文档里引用一个外部样式表文件（style.css）呢？答案是：在HTML文档里创建一个指向外部样式表文件的链接（link）即可，就像下面这样：

[image: image70.png]<link rel="stylesheet’ type="text/css’ href="style/style.css” />

注意要在href属性里给出样式表文件的地址
这行代码必须被插入HTML代码的头部（header），即放在标签<head>和标签</head>之间。就像这样：

[image: image71.png]<htnl>
<head>
<title>BAIIR/title>
<link rel="stylesheet” type="text/css’ href="style/style.css” />
</head>
<body>

这个链接告诉浏览器：在显示该HTML文件时，应使用给出的CSS文件进行布局。
这种方法的优越之处在于：多个HTML文档可以同时引用一个样式表。换句话说，可以用一个CSS文件来控制多个HTML文档的布局。
[image: image72.png]aszel B
AR ARATE

stecss BUREIRFTAS| A
BATHTMLY. %

n
iilivg
n
iilivg
n
iilivg
n

)

B AR~ HEABRFFEHTMLIZ 1%

I

这一方法可以令你省去许多工作。例如，假设你要修改某网站的所有网页（比方说有100个网页）的背景颜色，采用外部样式表可以避免你手工一一修改这100个HTML文档的工作。采用外部样式表，这样的修改只需几秒钟即可搞定——修改外部样式表文件里的代码即可。
让我们来实践刚刚所学到的知识，自己试试看：
打开记事本（或其他文本编辑器），创建两个文件——一个HTML文件，一个CSS文件——它们的内容如下：

default.htm：
[image: image73.png]<htnl>
<head>
<Htle>BA IR/ i tle>
<link rel="stylesheet” type="text/css” href="style.css” />
</head>
<body>
<BDBEATE—DERFR /0L
<body>
</ntnl>

style.css：
[image: image74.png]body {
background-color: #FF0000;
i

然后，把这两个文件放在同一目录下。记得在保存文件时使用正确的扩展名（分别为“htm”和“css”）。 用浏览器打开default.htm，你所看到的页面应该具有红色背景。恭喜！你已经完成了自己的第一个样式表！
2、 元素的分类与标识（class和id）
有时，你希望对特定元素或者特定一组元素应用特殊的样式。在这一节，我们将深入学习如何利用class和id来为所选元素指定属性。
如何实现为网站上许多标题中的某一个单独应用颜色？如何实现把网站上的链接分为不同的类，并对各类链接分别应用不同的样式？这只是本节将解决的诸多问题中的最具代表性的两个问题。
用class对元素进行分类：
比方说，我们有两个由链接组成的列表，它们分别是用于制造白葡萄酒和红葡萄酒的葡萄。其HTML代码如下：
[image: image75.png]<prElEEHHTOFE: o>

<11>BF 4 (Riesling) </1i>
<11>EH R (Chardonnay) </1i>
<11>E i (Pinot Blanc) </1i>
<ful>

<pHIELHEBTOFE: Jp>

<11> FH N RHER (Cabernet Sauvignon) </1i>
<11>E/RF (Merlot) </1i>

<11>BHH# (Pinot Noir) </1i>

<ful>

[image: image76.png]IHEO WEO FFW KR TAD #Ho

[GER:3E3
HEAEEENES.

o BE%Y (Rieslin

o E37#& (Chardonnay

« B (Pinot Blanc
HEOEEENES.

« EEAZEMR (Cabernet Sauviznon)

« BE (erlon)
o EHHE (Pinot Noir

现在，我们希望白葡萄酒的链接全部显示为黄色，红葡萄酒的链接全部显示为红色，其余的链接显示为缺省的兰色。为了实现这一要求，我们将链接分为两类。对链接的分类是通过为链接设置HTML属性class实现的。
参加如下代码：
[image: image77.png]<prElEEHHTOFE: o>

<1i>EF4 (Riesling) {/a></11>
<11>EHR (Chardonnay) </1i>
<1i>H Hi¥ (Pinot Blanc) </11>
<ful>

<pHIELHEBTOFE: Jp>

<11>FH AR (Cabernet Sauvignon) </11>
<11>E/RF (Merlot) </11>

<11>BIH# (Pinot Noir) </1i>

<fu1>

然后，我们就可以为白葡萄酒和红葡萄酒的链接分别应用不同的风格了。
[image: image78.png]color: blue;

itevine {
color: #FFBBOO

i

a.redrine {
color: #300000
i

[image: image79.png]=18l

z;*é) iﬁ;ﬁ‘@) égq) qm‘@ iﬁq) %wxm) | &
|

[GER:3E3

HEAEEENES.

o B (Rieslin
o E37# (Chardonnay
« B (Pinot Blanc

HEOEEENES.
o FAMFEHER (Cabernet Sauvignon)
o B (Herlot
o B (Pinot Noir

BATRTEAENEETREZ 6.

如上例所示，你可以通过在样式表里利用.classname来为属于某一类的元素定义CSS属性。
利用id标识元素：
除了可以对元素进行分类以外，你还可以标识单个元素。这是通过HTML属性id实现的。HTML属性id的特别之处在于，在同一HTML文档中不能有两个具有相同id值的元素。文档中的每个id值都必须是唯一的。在其他情况下，你应该使用class属性。下面，我们来看一个使用id属性的例子：
[image: image80.png]<LEIE />
L 1 2>
L. 2% h2>
h1E2E /n1>
2. 19 2>

2. 1 UM 2>

上例是一个文章的各章节的标题。我们自然可以为其中每一章节指定一个id（如下）：
[image: image81.png]<h1
e
e
b
e

<3

id="c1DE1FEU/RL>
1d="c1-1">81. 19 </h2>
id="c1-2">%1. 2H </h2>
id="c2>E2EU/nL>
1d="c2-1">82. 1 </h2>

id="c2-1-2">%2. 1. 1% </h3>

假如我们要求第1.2节显示为红色，那么CSS可以这样写：
[image: image82.png]#cl-2 {
color: red;
i

[image: image83.png]=lolx|

IO @ED SEQ KO TAD BHO | &

o

LA

如上例所示，你可以在样式表里通过#id为特定元素定义CSS属性
3、 字体属性

这一节，你将学习字体以及如何用CSS来设置字体。我们还会考虑如何解决“网站所选的字体仅当访问者的PC上安装有该字体时才会被显示”这一难题。本节将对下列CSS属性进行讲解：
· font-family
· font-style

· font-variant

· font-weight

· font-size

· font

字体族[font-family]：
CSS属性font-family的作用是设置一组按优先级排序的字体列表，如果该列表中的第一个字体未在访问者计算机上安装，那么就尝试列表中的下一个字体，依此类推，直到列表中的某个字体是已安装的。
有两种类型的名称可用于分类字体：字体族名称（family-name）和族类名称（generic family）。下面来解释这两个术语。
字体族名称（family-name）：
字体族名称（就是我们通常所说的“字体”）的例子包括“Arial”、“Times New Roman”、“宋体”、“黑体”等等。
族类（generic family）：
一个族类是一组具有统一外观的字体族。sans-serif就是一例，它代表一组没有“脚”的字体。
下面我们通过三个族类的例子来进行解释：
[image: image84.png]Times New Roman
Garamond
Georgia

Trebuchet
Arial
Verdana

Courier
C
Andele Mono

er N

ur.

NIRRT senfhE2,
[ETRIB RN SR -
EEFRAE M.

L= FHERER T sans senfiE2E,
- BRI EN SR -
EE PR EE

L= HREF nonospacelF,
- EIRIHEE SR
FrEF TR A1,

你在给出字体列表时，自然应把首选字体放在前面、把候选字体放在后面。建议你在列表的最后给出一个族类（generic family），这样，当没有一个指定字体可用时，页面至少可以采用一个相同族类的字体来显示。
下面是一个按优先级排列的字体列表的例子：
<body>
<h1>大标题是Arial字体</h1>

<h2>而次标题是Times New Roman字体</h2>

</body>
[image: image85.png]IO @ED SEQ KO TAD MO | &

=
KFR R Arial 744

T 2K b7 A% & Times New Roman#4%
-]

h1标题将采用Arial字体显示。如果访问者的计算机未安装Arial，那么就使用Verdana字体。假如Verdana字体也没安装的话，那么将采用一个属于sans-serif族类的字体来显示这个h1标题。注意我们为“Times New Roman”采用的写法：因为其中包含空格，所以我们用引号将它括起来。
字体样式[font-style]：
CSS属性font-style定义所选字体的显示样式：normal（正常）、italic（斜体）或oblique（倾斜）。在下例中，所有h2标题都将显示为斜体。
[image: image86.png]hl [font-family: arial, verdana, sans-serif;}
h2 {font-family: “Times Nev Roman”, serif; font-style: italic;}

[image: image87.png]IO @ED SEQ KO TAD BHO | &

KA% 82 Arial 4k
T KR TR R Times New Roman £

字体变化[font-variant]：
CSS属性font-variant的值可以是：normal（正常）或small-caps（小体大写字母）。small-caps字体是一种以小尺寸显示的大写字母来代替小写字母的字体。不太明白？我们来看几个例子：
[image: image88.png]SansBook SC SansBold SC SerfBook SC SerfBold SC

ABCABC ABCaBC ABCaBC ABCaBC

如果font-variant属性被设置为small-caps，而没有可用的支持小体大写字母的字体，那么浏览器多半会将文字显示为正常尺寸（而不是小尺寸）的大写字母。
[image: image89.png]hl {font-variant: small-caps;}
h2 {font-variant: nornal;}

[image: image90.png]HE =lolx|

IO @ED SEQ KO TAD BHO | &

OO [N & (| Ome Josex @ - L~

KRR /K E 7B
WA IE

字体浓淡[font-weight]：
CSS属性font-weight指定字体显示的浓淡程度。其值可以是normal（正常）或bold（加粗）。有些浏览器甚至支持采用100到900之间的数字（以百为单位）来衡量字体的浓淡。
[image: image91.png]arial, verdana, sans—serif;}
arial, verdana, sans-serif; font-veigh

p {font-fanily:
td {font-fanily:

bold;}

字体大小[font-size]：
字体的大小用CSS属性font-size来设置。
字体大小可通过多种不同单位（比如像素或百分比等）来设置。在本教程中，我们将关注于最常用和最合适的单位。比如：
[image: image92.png]{font-size: 30px;}
{font-size: 12pt;}
{font-size: 120%;]
£

i
h2
h3
p {font-size: lem;}

[image: image93.png]A htp:/izh.html.net - font-size - 3648 : | $45:
IO REO TEY W TAD B

PR <hl> K/ 30px
BB <h2> K/ lem

PR <h3> K/h 120%

B @ A Len
B

© Irternet

上面四种单位有着本质的区别。‘px’和‘pt’将字体设置为固定大小，而‘%’和‘em’允许页面浏览者自行调整字体的显示尺寸。有些页面浏览者可能是残疾者、年长者、视力不佳者，或者他所使用的电脑显示屏显示质量差。为了令你的网站对所有人都具有良好的可用性（accessibility），你应采用像‘%’或‘em’这种允许用户调节字体显示大小的单位。
下面你能看到我们展示如何在Mozilla Firefox和Internet Explorer里调整字体大小。自己试试看！这个功能很不错吧？
[image: image94.png]In most browsers you 2 Fonts - Lesson 4 | CSS Tutorial | HTh

can adjust the text size Fie Edt | View Favortss Tooks Help

Qe | sz

nddress [

Internet Explorer —

Mozilla Firebird

{

Fonts - Lesson 4 | CSS Tutorial | HTML.net

Bl Edt [Vew G0 Bookmals Iook tep

Tookars »
v Status gar
Sidebar »
Stop Esc
Reload iR

Decrease Text 5ze. Cir+-
eracter Cadng

Page Source iy

Eul screen Fi1

Largest
Larger

o Hedim
Smaler
Smallest

缩写[font]：
CSS属性font是上述各有关字体的CSS属性的缩写用法。
比如说下面四行应用于p元素的代码：
[image: image95.png]font-style:
font-veight:

italic;
bold;

font-size: 30px;

font—family:

arial,

sans—serif;

如果用font属性的话，上述四行代码可简化为：
[image: image96.png]font:

italic bold 30px arial,

sans—serif;

font属性的值应按以下次序书写：
font-style | font-variant | font-weight | font-size | font-family
小结：
在这一节，你学习了有关字体设置的用法。记住：CSS的一个主要优势就是可以在任何时候设置字体，你花几分钟就可以改变整个网站的字体。CSS节省时间，而且把事情简化。在下一节，我们将学习文本（text）。
4、 文本属性

文本的显示格式与式样对于网页设计师来说是一个重要问题。这一节将向你介绍CSS在文本布局方面令人激动的特性。本节将对下列CSS属性进行讲解：
· text-indent
· text-align

· text-decoration

· letter-spacing

· text-transform

文本缩进[text-indent]：
CSS属性text-indent用于为段落设置首行缩进，以令其具有美观的格式。在下例中，我们为采用p元素的段落应用了30像素的首行缩进。
[image: image97.png]text-indent: 30px;

[image: image98.png]A text-indent - 3B 58 : |, B | CSSHE(#R | HT.
IO REO TEY WO TAD B

A

Interdun volgus rectum videt, est ubi peccat.

Si veteres ita miratur laudatque poetas, ut nihil
anteferat, nihil illis comparet, errat. Si

quaedam nimis antique, si peraque dure dicere

credit eos, ignave milta fatetur, et sapit et

mecun facit et lova iudicat aequo.Non equidem
insector delendave carmina Livi esse reor. memini |
B D Internet

文本对齐[text-align]：
CSS属性text-align与HTML属性align的功能相同。该属性的值可以是：left（左对齐）、right（右对齐）或者center（居中）。除了上面三种选择以外，你还可以将该属性的值设为justify（两端对齐），即伸缩行中的文字以左右靠齐。报刊杂志经常采用这种布局。
在下例中，标题（th）中的文字被设置为右对齐，而表中数据（td） 被设置为居中。正常的文本段落被设置为两端对齐。
[image: image99.png]text-align: Tight;

text-align: center;

text-align: justify;

[image: image100.png]A http:/izh.html.net - text-align - 3658 : , B42: | CSSEA | HTML.net - Microso... F=1ron =<

THE HERE FEY KWW TED #Bm

AR
AL BB SCAR T

BT 1
T 3

B ¥ o OB X

Interdun volgus rectum videt, est ubi peccat. Si veteres ita miratur
laudatque poetas, ut nihil anteferat, nihil illis comparet, errat. Si
quasdam nimis antique, si peraque dure dicere credit eos, ignave milta
fatetur, et sapit et mecum facit et Iova iudicat aequo.Non equidem insector
delendave carmina Livi esse reor, memini quae plagosum mihi parvo Orbilium
dictare; sed emendata videri pulchraque et exactis minimm distantia miror.
Inter quac verbum emicuit si forte decorum et si versus paulo concimnior
unus et alter, venditque poema.

Indignor quicquam reprehendi, non quia crasse compositum illepedeve putetur,
sed quia nuper, nec veniam antiquis, sed honorem et praemia posci. Recte

| &) 7 @ Internet

]

文本装饰[text-decoration]：
CSS属性text-decoration令我们可以为文本增添不同的“装饰”或“效果”。例如，你可以为文本增添下划线、删除线、上划线等等。在接下来的例子中，我们为h1标题增添了下划线，为h2标题增添了上划线，为h3标题增添了删除线。
[image: image101.png]text-decoration:

text-decoratio

text-decoration:

underline;

overline;

1ine-through;

[image: image102.png]2 hitp:/izh. himl.net - text-decoration - 5&... P=qPERES™
IO REO TEY W TAD B

T T RIZR A

a

T ERIEE A

© Irternet

字符间距[letter-spacing]：
CSS属性letter-spacing用于设置文本的水平字间距。我们可以把期望的字间距宽度作为这个属性的值。例如，假如你希望p元素里的文本段落的字间距为3个像素，而h1标题的字间距为6个像素，代码可以这样写：
[image: image103.png]nl {
letter-spacing: 6px;
i

i
i

letter-spacing: 3px;

[image: image104.png]2 hitp:/izh.html.net - letter-spacing - 5658k: , B44: | CSSEA | HTML.net - Microsoft Internet... F= s
IO REO TEY WO TAD B &

A TR 2 A AR

Interdun volgus rectum videt, est ubi peccat. Si veteres ita
miratur laudatque poetas, ut nihil anteferat, nihil illis
comparet, errat. Si quaedam nimis antique, si peraque dure

dicere credit eos, ignave multa fatetur, et sapit et mecum

facit et lova iudicat aequo.Non equiden insector delendave

carmina Livi esse reor, memini quae plagosum mihi parvo

Orbilium dictare; sed emendata videri pulchraque et exactis
minimum distantia mirar. Tnter anae verbum emicnit si farte]

B @ Interne

文本转换[text-transform]：
CSS属性text-transform用于控制文本的大小写。无论字母本来的大小写，你可以通过该属性令它首字母大写（capitalize）、全部大写（uppercase）或者全部小写（lowercase）。
比如，单词“headline”在展现给网页浏览者时，可以是“HEADLINE”或者“Headline”。text-transform属性有四个可选值：
Capitalize：将每个单词的首字母转换为大写。例如：“john doe”将被转换为“John Doe”。
Uppercase：所有字母都转换为大写。例如：“john doe”将被转换为“JOHN DOE”。
Lowercase：所有字母都转换为小写。例如：“JOHN DOE”将被转换为“john doe”。
None：不作任何转换——文本怎么写的就怎么显示。
来举个例子，我们将使用一个姓名列表。所有姓名都用（列表项）标签来标记。我们希望对姓名采用首字母大写的方式，而对标题采用全部大写的方式。
查看过该例的HTML代码后你会发现，其实在HTML代码里我们写的姓名和标题全部都是小写。
[image: image105.png]text-transforn: uppercase;

text-transforn: capitalize;

<body>
<h1>这个标题采用大写字母</h1>

peter hanson

max larson

joe doe

paula jones

monica lewinsky

donald duck

<p>注意，我们用CSS实现了令所有人名的首字母大写。</p>

</body>
[image: image106.png]2 http:/izh.html.net - text-transform - 56 58: , ...
IO REO TEY KW TAD B

Q- © KRG P fwax @

AR BR A KE 7B

« Peter Hanson

o Max Larson

» Joe Doe

o Paula Jones

o Nonica Lewinsky
« Donald Duck

HE, BIOACSSEAT LIFAGNETELS.

© Internet

第六章　使用样式表美化页面2

本章目标：熟悉显示属性：display
熟悉边框属性：Border,border-style 等
熟悉定位属性：top,Width,Height,Left
本章重点：如何使用CSS样式表进行布局修饰
本章难点：边框属性
1、 显示属性
显示属性允许使用四个值中的一个来定义一个元素：

block ：在元素的前和后都会有换行
inline ：在元素的前和后都不会有换行
list-item ：与block相同，但增加了目录项标记

none ：没有显示

下面我们来看一个分级属性的例子，代码如下所示：

[image: image107.png]p(display: block; white-space: normal) +
e display: inline) +

lidisplay: list-item; list-style: square) +
img(display: block) ©

<body>
　　 <p>

sampletextsampletextsample
　　 textsample textsample

</p>
　　　

 list-item 1
　　　 list-item 2

list-item 3

　　 <p><img src=“ss01068.jpg” width=“280”height=“185”
　　　　　　　　　　alt=“invisible”>

</p>
</body>

上段代码的显示效果如下图：
[image: image108.png]sampletextsanpletext sanpletext sampletext sample

list-item 1
list-item 2
list-item 3

我们看到由于定义了<p>的属性为Block，所以文本、列表、图片都在不同的位置上打开，Inline属性使文本不折行，list-style-type的属性值为square使列表项前的符号为方块；
如果我们在上面的代码中做一些改动，则将以另一种效果显示，我们在<head>中把“EM”的display属性值改为block，使其都在新的位置打开；li的“list-style”属性值改为“Upper-roman”（大写罗马符号），img的“display”属性值改为“none”（让图片不显示）。 修改后的显示效果如下图：
[image: image109.png]sample
text
sanple
text
sanple
text
sanple
text
sanple

I. list-item 1
II. list-item 2
III. list-item 3

2、 边框属性
边框（border）可以有多种用途，比如作为装饰元素或者作为划分两物的分界线。在设置边框方面，CSS为你提供了无尽选择。
· border-width
· border-color

· border-style
边框宽度[border-width]：

边框宽度由CSS属性border-width定义，其值可以是“thin”（薄）、“medium”（普通）或“thick”（厚）等，也可以是像素值。如下图所示：
[image: image110.png]

边框颜色[border-color]：
[image: image111.png]

CSS属性border-color用于定义边框的颜色。其值就是正常的颜色值，例如：“#123456”、 “rgb(123,123,123)”、“yellow”等。
边框样式[border-style]：
边框样式有多种可供选择。下图显示了8种不同样式的边框在Internet Explorer 5.5里的实际显示效果。在这个例子里，我们为这8种边框都选择了“金色（gold）”作为边框颜色、“厚(thick)”作为边框宽度。当然，这只是个例子，你可以为边框设置别的颜色和厚度。如果你不想有任何边框，可以为它取值为“none”或者“hidden”。
[image: image112.png]OO0]

dotted

dashed

solid

double

groove

ridge

inset

outset

一些示例：
我们可以将上面三个有关边框的CSS属性组合起来使用，从而制造出多种多样的变化。来举个例子，我们要为一个文档中的h1、h2、ul和p等元素分别定义不同的边框。尽管其显示效果也许并不那么美观，但是它很好地向你展示了多种变化的可能：
[image: image113.png]border-width:
border—style:

border—color

border-width:
border—style:
border—color:

border-width:
border—style:
border—color:

border-width:
border—style:
border—color:

thick;
dotted;
1gold;

20px;
outset;
red;

1px;
dashed;
blue;

thin;
solid;
orange;

[image: image114.png]A http:/izh.html.net - 33 - E11E: BT
IO REO TEY WO TAD B

| CSSHE(#E | HTML.net - Microsoft Internet Explorer

finter ponetur honeste,
tor permisso,

qui vel mense brevi vel toto est iunior amno.

caudaeque pilos ut equinae paulatim vello unum,
atione ruentis acervi,

demo etiam unum,

dum cadat elusus
qui redit in fastos et amnis miraturque.

tam Graecis novitas

© Irternet

我们也可以为上边框、下边框、右边框、左边框分别指定特定的CSS属性。具体做法如下例所示：
[image: image115.png]ht {
border—top-width: thick;
border—top-style: solid,
border—top-color: red;

border-bot ton—width: thick;
border-botton—style: solid;
border-bot ton—color: blue;

border-right-width: thick;
border-rightstyle: solid;
border-right—color: green;

border-left-width: thick;
border-left-style: solid;
border-left-color: orange;

[image: image116.png]@ FWHEAA FBRERIHE - £118E: W2 | CSSHAE | HTML.net - ... =

THE GEE TEY KW@ HEEEQ #RQ TAD FOW ®HE

91613 x 165 108

| %@ 356 13

缩写[border]：
跟许多其他属性一样，你也可以将有关边框的CSS属性缩写为一个border属性。让我们看一个例子：
[image: image117.png]p i
border-width: 1px;
border—style: solid;
border—color: blue;

可被缩写为：
[image: image118.png]p i

}

border: lpx solid blue;

外边距和内边距：
一个元素有上（top）、下（bottom）、左（left）、右（right）四个边。外边距（margin）表示从一个元素的边到相邻元素(或者文档边界)之间的距离。在下面这个例子中，我们将了解如何为文档本身（即body元素）定义外边距。下图显示了我们对外边距的要求。
[image: image119.png]T

满足上述要求的CSS代码如下：
[image: image120.png]body {
nmargin—top:100px;
nargin-right:40px;
nargin-bottom:10px;
nargin-left:70px;

或者你也可以采用一种较优雅的缩写形式：
[image: image121.png]body {
nargin: 100px 40px 10px 70px;
}

[image: image122.png]ARE VNI 108 B1: | CSSEA | HTML.net - Microsoft Internet Explorer
IO REO TEY WO TAD B

BB T MU SORY

Iste quidem veteres inter ponetur honeste, qui vel mense brevi vel toto est iunior anno. Utor
permisso, caudaeque pilos ut equinae paulatim vello unum, demo etiam unum, dum cadat elusus
ratione ruentis acervi, qui redit in fastos et annis miraturque.

© Irternet

几乎所有元素都可以采用跟上面一样的方法来设置外边距。例如，我们可以为所有用<p>标记的文本段落定义外边距：
[image: image123.png]body {
nargin: 100px 40px 10px 70px;
}

p
}

margin: 5px 50px 5px 50px;

[image: image124.png]2 http:/izh.htmlnet - WEH [7MAWESIE -56108K: | B12: | CSSEAE | HTML.net - Microsoft Internet Explorer
IO REO TEY KW TAD B

Q- O & G ows dooms @ 21w - B

BB T AU SOR

Iste quidem veteres inter ponetur honeste, qui vel mense brevi vel toto est iunior
amno. Utor permisso, caudaeque pilos ut equinae paulatim vello unum, demo etiam unum,
dum cadat elusus ratione ruentis acervi, qui redit in fastos et annis miraturque.
Ermius et sapines et fortis et alter Homerus, ut critici dicunt, leviter curare
videtur, quo promissa cadant et somnia PythagoreaNaevius in manibus non est et
mentibus haeret paene recens? Adeo sanctum est vetus omne poema. Ambigitur quotiens,
sit prior, Pacuvius docti.

© Internet

为元素设置内边距：
内边距（padding）也可以被理解成“填充物”。这样理解是合理的，因为内边距并不影响元素间的距离，它只定义元素的内容与元素边框之间的距离。
下面我们通过一个简单的例子来说明内边距的用法。在这个例子中，所有标题都具有背景色：
[image: image125.png]ht {
}
h2 {

}

background: yellow;

background: orange;

[image: image126.png]A http:/izh.html.net - #F BUAT IR - S£108: 43 | CSSHAR | HTML.net - Microsoft Internet Explorer

IO RO BEY KW@ TED #BH

Q- © &6 O drem= @3- 2 - ®

Ernius et sapines et fortis et alter Homerus, ut critici dicunt, leviter curare videtur, quo promissa cadant
et somia Pythagorea Naevius in manibus non est et mentibus haeret paene recens? Adeo sanctum est vetus omne
poema. Ambigitur quotiens, sit prier, Pacuvius docti.

Indignor quicquam reprehendi, non quia crasse compositum illepedeve putetur, sed quia nuper, nec veniam
antiquis, sed honorem et praemia posci. Recte necne crocum floresque perambulet Attae fabula si dubitem,
clament periisse pudorem cuncti paene patres, ea cum reprehendere coner, quae gravis Aesopus, quae doctus
Roscius egit; vel quia nil rectum, nisi quod placuit sibi, ducunt, vel quia turpe putant parere minoribus, et
quae imberbes senes.

| &) EAEHTFFIT hitp:f{zh.html.net tutorisls/css lesson10_ex3. asp. B8

@ Internet

]

通过为标题设置内边距，你可以控制在标题文本周围填充多少空白：
[image: image127.png]ht {
background: yellow;
padding: 20px 20px 20px 80px;

h2 {
background: orange;
padding-left:120px;

[image: image128.png]A hitp:/izh.html.net - BAT IR - E108: |, B4
XHE @EE SEY EEE TAD Bh

Qre- © [¥ @& Pur g

| CSSHE(#E | HTML.net - Microsoft Internet Explorer

R BRI P 4 PR

Ernius et sapines et fortis et alter Homerus, ut critici dicunt, leviter curare videtur, quo promissa cadant
et somia Pythagorea Naevius in manibus non est et mentibus haeret paene recens? Adeo sanctum est vetus omne
poema. Ambigitur quotiens, sit prier, Pacuvius docti.

Hos ediscit et hos arto stipata

GES

© Internet

3、 定位属性
CSS定位令你可以将一个元素精确地放在页面上你所指定的地方。
CSS定位的原理：
把浏览器窗口想象成一个坐标系统：
[image: image129.png]Opera

A88

Q-4 heBE

sopr

1000

+50px

200px

250px

Sop

ot

A5t

o0

2505

005

500

ot

4500

So0x

假设我们要放置一个标题：
[image: image130.png]Headline

如果我们要把这个标题放置在距文档顶部100像素、左边200像素的地方，我们可以在CSS中输入以下代码：
[image: image131.png]ht {
position:absolute;
top: 100px;
left: 200px;

得到的显示效果如下：
[image: image132.png]Ao QA hé

S0 | 100w fstpe | 200mx| 250mx I00mx | 300x 400ax | hsope | S0 Al
Eon
(200px. 100pY
%
100 1 dl_
150
200
250
Kl

正如你所看到的，采用CSS定位技术来放置元素是非常精确的。相对于使用表格、透明图像或其他方法而言，CSS定位要简单得多。
绝对定位：
一个采用绝对定位的元素不获得任何空间。这意味着：该元素在被定位后不会留下空位。
要对元素进行绝对定位，应将position属性的值设为absolute。接着，你可以通过属性left、right、top和bottom来设定将盒子放置在哪里。
举个绝对定位的例子，假如我们要在文档的四个角落各放置一个盒子：
[image: image133.png]#oxl {
position:absolute;

top: 50px;
left: 50px;

}

#ox2 {
position:absolute;
top: 50px;
right: 50px;

}

#ox3 {
position:absolute;
bottom: 50px;
right: 50px;

}

#hoxd {

position:absolute;
bottom: 50px;
left: 50px;

[image: image134.png]@ position - £ 148 : B1: | CSSEA | HTML.net - #(B7 [Maxthon]

THE RO TEY KW@ BEEQ Wi TAD Fow #H > E-E

BED @i

%> 5o um

相对定位：
要对元素进行相对定位，应将position属性的值设为relative。绝对定位与相对定位的区别在于计算位置的方式。
采用相对定位的元素，其位置是相对于它在文档中的原始位置计算而来的。这意味着，相对定位是通过将元素从原来的位置向右、向左、向上或向下移动来定位的。采用相对定位的元素会获得相应的空间。
举个相对定位的例子，我们可以相对于三张图片在页面上的原始位置来对它们进行相对定位。注意这些图片将在文档中各自的原始位置处留下空位。
[image: image135.png]#dog1 {

LEFT: 35px; BOTTOM: 15px; POSITION:
relative
¥
#tdog2 ¢

LEFT: 100px; BOTTOM: 50px; POSITION:
relative
¥
Htdog3 ¢

LEFT: 10px; BOTTOM: 70px; POSITION:
relative
¥

<BODY>

<H1>The Tinder-Box</H1>

<P>By Hans Christian Andersen</P>
<DIV id=dog1>
</DIV>

<P>"Get money," she replied; "for you must know that when you reach the ground

under the tree, you will find yourself in a large hall, lighted up by three

hundred lamps; you will then see three doors, which can be easily opened,
for the keys are in all the locks.
</P>

<DIV id=dog2></DIV>

<P>"No," said the witch; "but I do not ask for a single penny. Only promise
to bring me an old tinder-box, which my grandmother left behind the last time
she went down there." </P>
<DIV id=dog3></DIV>

<P>Then he went into the third room, and there the dog was really hideous;
his eyes were, truly, as big as towers, and they turned round and round in
his head

like wheels...</P>
</BODY>
[image: image136.png]@ position - 55148, BI2: | CSSBAE | HTML. net - (7 [Maxthon] R
HHE WEEO BTEW @@ e B00) TAD ®Ow HH 8-8
o

By Hans Christian Andersen

(2

“Get money, ” she replied; “for you must know that when you reach the ground under the
tree, you will find yourself in a large hall, lighted up by three hundred lamps; you
will then see three doors, which can be easily opened, for the keys ave in all the
lacks.

“No,” saidh the witch; “but I do not ask for a single penny. Only promise to bring me an
old ti sgalich my grandmother left behind the last time she went down there.”

BE o ® %D 570 1s

]

第七章　HTML 中框架、层的运用

本章目标：掌握框架结构<frameset><frame><iframe>
掌握组织元素：span和div
本章重点：框架结构<frameset><frame><iframe>
本章难点：框架的搭建
1、 框架
使用框架，可以在一个浏览器窗口中显示不止一个HTML文档。这样的HTML文档被称为框架页面，它们是相互独立的。：

使用框架的不利因素有：
· 网站开发者需要关心更多HTML文档的情况。

· 打印整个页面变得困难。
· frameset标签：
· <frameset>标签定义了如何将窗口拆分成框架。

· 每个frameset标签定义了一组行和列。

· 行/列的值指明了每个行/列在屏幕上所占的大小

frame标签：
· <frame>标签定义了每个框架中放入什么文件。
下面这个例子中，有一个两列的分栏。第一个被设置成窗口宽度的25％，第二个被设置成窗口宽度的75％。页面“frame_a.htm”被放在第一个分栏中，“frame_b.htm”被放在第二个分栏中。
[image: image137.png]Cframeset cols="25%, TS¥">
“Erane_a htn">
“Erane_b. htn">

<Erane ar

<Erane ar
eraneset>

基本注意点——有用的技巧：
假如一个框架有可见边框，用户可以拖动边框来改变它的大小。如果不想让用户改变大小，可以在<frame>标签中加入：noresize="noresize"。
给不支持框架的浏览器写上<noframes>标签。
更多示例：
混合框架：
<html>

<frameset rows="50%,50%">

<frame src="frame_a.htm">

<frameset cols="25%,75%">

<frame src="frame_b.htm">

<frame src="frame_c.htm">

</frameset>

</frameset>

</html>
[image: image138.png]IHEO SEO

EW kmW

18D

o)

frame_a. htn

frame_b. htn

frame_c. htn

这个例子说明了怎样把三个页面以行列混合的方式放在框架中。
[image: image139.png]105. b osoft Intera -1o) x|
IO @ED SEQ KEO TAD BHO | &

frame_a. htn

i

frame_b. htn frame_c. htn

如上图所示：把鼠标移动到框架边界上，你会发现可以调整框架大小。
使用了noresize="noresize"的框架：
<html>

<frameset rows="50%,50%">

<frame noresize="noresize" src="frame_a.htm">

<frameset cols="25%,75%">

<frame noresize="noresize" src="frame_b.htm">

<frame noresize="noresize" src="frame_c.htm">

</frameset>

</frameset>

</html>
[image: image140.png]IO @ED SEQ KEO TAD BHO | &

frame_a. htn

frame_b. htn frame_c. htn

e I P,] 7

这个例子说明了noresize属性。这个框架是不可改变大小的，把鼠标移动到框架边界上，你会发现无法调整大小。
导航框架：
<html>

<frameset cols="120,*">

<frame src="frame_link.htm">

<frame src="frame_a.htm" name="showframe">

</frameset>

</html>
[image: image141.png]AIC:\Documents and Settings\adnin\SI\G15106. htal = Nicrosoft TnternethESu[=I |

frame_a. htn

这个例子说明了如何创建一个导航框架。导航框架包含了一系列链接，它们的目标页面在第二个框架中。文件“frame_links.htm”包含了三个链接，链接的代码如下：
[image: image142.png]<a bref
< et
<o e

“showfrane"SFrane a
Showtrane” Frane b
Showtrane” Frane c

“Erane_a htn” target
Erama b htn” target
Eramsc. hin” target

第二个框架将显示链接到的页面。
内联框架：
<html>

<body>

<iframe src="intro.htm"></iframe>

<p>Some older browsers don't support iframes.</p>

<p>If they don't, the iframe will not be visible.</p>

</body>

</html>
[image: image143.png]TStore:C:\Docunents and Settings\admin\SSM\SRHINITNRRRN (=] b

MNEER RS Coer

TR B S EEAS
SRS |
TRaE e s ety]

© UL B

[I— D]

Some older browsers don' support frames.

TFthey don't, the iframe will not be visible.

T[S =abem "

这个例子说明了如何创建一个内联框架（包含在HTML页面里的框架）。
在框架内跳转到指定章节：
<html>

<frameset cols="30%,70%">

<frame src="frame_a.htm">

<frame src="frame_section.htm#C10">

</frameset>

</html>
[image: image144.png]Documents and ngs\admin\SLH\E 5108 b osoft Intern -0/ x|
IO @ED SEQ KEO TAD BHO | &

frame_a. htn

Jump to the Useful Tips Section J

& I 7

这个例子显示了两个框架页。其中一个的源是一个文件的指定章节，该章节在文件“frame_section.htm”中使用代码指定。
使用导航框架跳转到指定章节：
<html>

<frameset cols="200,*">

<frame src="frame_linksection.htm">

<frame src="frame_section.htm" name="showframe">

</frameset>

</html>
[image: image145.png]AIC:\Documents and Settings\adnin\SIf\G15109. htal = Nicrosoft TnternethENSu =] ||

ek et i g
R T

这个例子显示了两个框架页。左边的导航框架包含了一系列以第二个框架为目标的链接（“frame_linksection.htm”），第二个框架显示链接文件（“frame_section.htm”）。导航框架中的一个链接指向目标文件中的指定章节。文件“frame_link”中的HTML代码是像这样的：
[image: image146.png]Ka href ="frame_section.htm" target ="showframe">J5H a4 Ay

<a href —"frame_section htn#C10" target -"showframe" >3 @y BRIBEEEC/a>

2、 组织元素：span和div
span和div元素用于组织和结构化文档，并经常联合class和id属性一起使用。
用span组织元素：
 span元素可以说是一种中性元素，因为它不对文档本身添加任何东西。但是与CSS结合使用的话，span可以对文档中的部分文本增添视觉效果。
让我们用一句本杰明·弗兰克林（Benjamin Franklin）的名言来举个例子：
[image: image147.png]<p>REEERADL
HARE. FRIRA. />

假设我们想用红色来强调弗兰克林先生所认为的“不要在睡眠中度过一天”的好处，我们可以用标签来标记上述每一点好处。然后，我们将这几个span设置为相同的class。这样，我们稍后就可以在样式表里针对这个class定义特定的样式。
[image: image148.png]<prRLEEEIL

1#AEBE</spand>.
E# {/span>
fiWM</spand. </p>

相应的CSS代码如下：
[image: image149.png]span. benefit {
color:red;
i

用div组织元素：
如前面例子所示，span的使用局限在一个块元素内，而div可以被用来组织一个或多个块元素。
除去这点区别，div和span在组织元素方面相差无几。让我们来看一个例子。我们将历届美国总统按其所属的政营分别组织为两个列表：
[image: image150.png]<div id="democrats”>

ADFET + D+ BAIE 11>
<LieEF) HE[7</11>

<LEHr < F e BRI/
SLIGHREE « B« A181iH</11>
QLEX « £
<UOELR « WA/ 11>
<ful>

<faiv>

<div id="republicans”>

CLOEITE « D SRBAR 11>
EIE « BRI

< RAF/11>

<ful>
</div>

在这里，我们可以采用跟上例同样的方法来处理样式表：
[image: image151.png]#democrats {
background:blue;
i

#republicans {
background:red;
i

第九章　XML 基本知识

本章目标：了解 XML 的应用范围
了解XML的文档结构

 理解格式正规的 XML 文档的特点

 熟悉有效的 XML 文档的编写规则

 理解命名空间
本章重点：熟悉有效的 XML 文档的编写规则
本章难点：理解命名空间
1、 XML的应用范围
人类一直在不断地尝试改进自己的发明，其中也包括人类最伟大的发明——文字的构成。第一个文本处理系统是用纸笔记录文字。现在，计算机文本处理器已经取代了手工处理，它不仅包含原始文档，还负责设置格式、出版和管理。在这些方便的功能整合到字处理之前，是由排字工人遵循书面标记说明来完成所有格式编排的。正是利益于这种实践，人们将“标记”这个词加入到HTML和XML。顾名思义，标记是指加上记号。文本处理环境（如XML）中使用了相同的标记过程。本意讲述标记语言的历史和创建XML文档的方法。
使用脚本语言或DHTML能够以各种方式显示信息。这就要求必须为相同的输出编写不同的代码以供不同的浏览器使用，因为这些语言不能跨浏览器兼容。
XML（eXtensible Markup Language，可扩展标记语言）克服了这些缺点。顾名思义，XML是可扩展的，即开发人员可以定义自己的一组标签，并使其他的人或程序能够理解这些标签。HTML是单标记语言，为特定应用设计，而XML则是一系列的标记语言。因此，XML比HTML灵活得多。实际上，由于XML标签表示了数据的逻辑结构，不同的应用可以通过不同的方式来解释和使用这些标签。Web上的数据大多是继承的，XML继承了SGML和HTML的优点。也就是说，它不仅继承了SGML的特色，还结合了HTML的特色。它采用了SGML的主要框架，有时，人们也将XML称为SGML的子集。因此，HTML是SGML的应用，而XML是SGML的子集。下图显示了标记语言的层次结构。
[image: image152.png]SGMLe

HTMLe

使用标签对文档进行标记以提供有关内容的信息，不仅能加快搜索速度，而且还能降低网络流量。XML是由SGML修整并改造而来，它是一种元语言，用于描述其他语言。我们可以使用XML为特定目的创建自己的标记语言（如化学标记语言）。XML是基于文本的格式，允许开发人员描述结构化数据并在各种应用之间发送和交换这些数据，这样客户端就可以显示并自定义数据。

XML还有助于在服务器之间传输结构化数据。有许多信息是分布在不同的和不匹配的数据库中。如有必要，XML允许通过使用自定义格式来标识、交换和处理这些数据库可以理解的数据。
XML和HTML有许多相同点和不同点。XML描述数据，如城市名称、温度和气压；HTML定义描述数据显示方式的标签，如使用项目符号列表或表格。但XML允许开发人员定义任意数量的标签集，使用开发人员有很大的灵活性来决定要使用哪些数据，并确定数据的适用标准或自定义标签。
XML应用范围：
对于Internet和大型企业Intranet环境，XML都是十分有价值的。这是因为它通过灵活、开放及基于标准的格式、访问遗留数据库及将数据发送至Web客户端的新方式，来提供了协同工作能力。不仅可以更快地构建应用，而且更易于维护，还可以通过不同的样式表提供多个结构化数据的视图，这将在后面的章节中介绍。
下面使用两个救命来说明使用XML会给个人、公司和组织带来什么好处。
SABRE ：SABRE集团是主要的国际旅游服务商之一，通过旅行社和Web提供电子旅游预约。他们使用Java应用程序将旅游信息转换为XML，这样全球的移动电话用户都可以通过移动电话查找、预订和购买机票和门票。XML自动转化为Wireless Markup Language（无线标记语言，WML），这是在移动电话上构建应用的标准语言。对于此应用来说，XML的优势在于其可扩展性、开发速度、能够使用XML构建标准资料库以及将它转换到特定的环境中，本例中为移动电话。
化学标记语言：化合物和化学分子是原子的复杂组合。大概有两千万个已知分子，直到最近才有机器可读的表示分子的标准方式。诺丁汉大学的Peter Murray Rust教授和伦敦大学帝国理工学院的Henry Rezpa博士这两们英国科学家开发出了用XML描述分子的标准方式。Chemical Markup Language（化学标记语言，CML）预期能够为化学行业节省大量人力物力，还有助于化学家之间以及其他相关学科（如生物和医药）之间的交流。在这种应用中使用XML的关键优势之一在于XML提供大量的工具，有助于迅速高效地创建CML应用。
2、 XML的文档结构
XML文档是由一组使用唯一名称标识的实体组成。所有文档都以根或文档实体开始，而且所有实体都是可选的。实体可以被视为更复杂功能的别名。单个实体名称可以代替许多文本。在别名方案中，每当需要引用某个文本时，只需要使用别名，处理器会展开别名的内容。
XML文档也有一种逻辑结构。逻辑上，文档的组成包括声明、元素、注释、字符引用和处理指令（在文档中使用显式标记表示），如下图所示。
[image: image153.png]ML PR
GRS
SRR

HETERY

<73l version="1.0" encoding="ghk" 70
<IDOCTYPE letter

[

<IENTITY myname ">«

e

tetter pri=BE >0

<name> &myrame, <fame><:
<to>Tomsto>«

<message>{IF </message>

<Metter>

XML文档始终以一个声明开始，这个声明指定该文档遵循XML1.0规范。

XML声明：

XML声明的语法如下所示。
[image: image154.png]<7zl version="1.0" 7>

XML声明是可选的，XML1.0版本是默认值。W3C规范建议使用XML声明，这样可以为文档匹配合适的解析器。发布更新版本时，需要提供相应的XML版本号。
XML声明是处理指令，告知处理代理该文档已经标记为XML文档，它还告诉解析器和其他应用程序应如何处理文件中的数据。包括XML声明在内的所有处理指令都以“<?”开始，以“?>”结束。“<?”后面是处理指令的名称，即“xml”。XML处理指令要求指定一个version属性，并允许指定可选的standalone和encoding属性。XML声明至少应有保留名称xml以及一个版本号，只有版本号是必需的。encoding详细信息和standalone声明可以跟在版本号后面，如下所示。
[image: image155.png]<7z version="1.0" standalone="no" encoding="UTF-5" 7>

如果包括了可选属性，则必须先指定版本。

standalone属性可以设置为yes 或no 。yes指定不使用外部声明，而no则表示将引用外部声明。

所有XML解析器都必须支持与ASCII相应的8位或16位Unicode编码。“encoding="UTF-8"”指定作者使用的字符编码。UTF8与8位ASCII字符相对应。“GB2312”或“GBK”与中文字符集相对应。

根元素：
根元素只能有一个，用于描述文档的功能。每个XML文档都有一个根元素。<HTML>是HTML的根元素。在XML中，可以自定义根元素。例如，使用<BOOK>作者为根元素，如下所示：
[image: image156.png]<2zl version="1.0" standalone="n0" encoding="UTF-§" 7>
<BOOK>«
</BOOK>+

XML代码：
根据应用需要创建自定义元素和属性。元素涉及标签及其内容。例如：
[image: image157.png]BOLD TEXT

标签包括尖括号以及尖括号中的文本。例如，<P>、<I>和</I>是在HTML中使用的一些标签。标签告诉用户代理（浏览器）处理结束标签之间的内容。
元素是XML内容的基本单元。开始标签，如<element_name>，标志着元素的开始，而结束标签，如</element_name>，标志着元素的结束。图1.5举例说明了元素的组成部分。
[image: image158.png]—

标签组成了XML标记的主要部分。XML标签与HTML标签非常相似。
数据与标记：
XML文档由数据以及描述该数据的标记组成。数据通常是字符数据，但也可以是二进制数据。标记包括标签、注释、处理指令、DTD和引用等。

以下是一个字符数据和标记的简单示例。
[image: image159.png]<NAME>F A </NAME>

在本例中，<NAME>和</NAME>是标记，“成龙”是字符数据。

注释：
有时，需要在XML文档中包含某些标签，而XML解析器（XML解析器帮助计算机解释XML文件）应该忽视这些标签，这种类型的文本称为注释文本。在HTML中，使用<!--和-->语法指定注释。在XML中也以相同的方式指定注释。注释的语法如下所示。
[image: image160.png]<l

使用注释时要遵循以下规则：

注释文本中不应包含“-”或“--”，因为可能会使XML解析器产生混淆。

注释绝对不能放在标签中。因此，以下代码是错误的。

[image: image161.png]<NANE <l-- # -

>0 - FTEHT </ NAME>

注释不能放在实体声明中，也不能放在XML声明之前。XML声明必须始终是任何XML文档的第一行。
注释可用于注释标签集。因此，在以下的代码中，除汤姆·克鲁斯以外的所有名字都会被忽略。
[image: image162.png]o
<o TR

<NAME>HURS « (RETRES <NAME>o
<NAME>JRPTES <SNAME>«
<NAME>IH#E</NAME>"

o

<NAME>718 « FREHT <NAME>0
e

注释不能嵌套
处理指令：
处理指令是为使用该XML文档的应用提供的一则信息。该指令直接传递到使用该解析器的应用，应用可以将信息传递到另一个应用，或自行对信息进行解释。XML声明也是一个处理指令。
处理指令的格式相同，如下所示。

[image: image163.png]<Pl stylesheet type="text/znl" 7>
“ I 3

HRMER B ESY

所有处理指令都必须以<? 开始，以 ?> 结束。
标签间的字符数据的分类：
开始标签和结束标签之间的文本被定义为字符数据。字符数据可以是“<”以外的任何合法（Unicode）字符。“<”字符预留作标签的开始字符。
Unicode定义一个完全国际化的字符集，可以表示人类语言中的所有字符。它统一了许多字符集，如拉丁字符、希腊字母、阿拉伯文等。
字符数据可以分为以下两类：PCDATA，CDATA。
具体叙述如下：
PCDATA：PCDATA表示已解析的字符数据。字符数据可被视为XML元素的开始标签和结束标签之间的文本。PCDATA是将要通过解析器进行解析的文本。文本中包含的标签将被视为标记，实体将会扩展。

CDATA：CDATA指字符数据。CDATA是不通过解析器进行解析的文本，文本中包含的标签将不被视为标记，实体不会扩展。在CDATA块中，XML解析器会忽略所有标签和实体引用。为了便于包含大量的特殊字符，提供了CDATA块。下面来看以下一段代码。
[image: image164.png]o
<SAMPLE>¢
<I[CDATA[<DOCUMENT>+
<NAME>F A <NAME>+
<EMAIL>jackie@usa com</EMAIL><
</DOCUMENT]]>+
<ISAMPLE>0

“

在以上代码中，不允许在CDATA块之内使用字符串“]]>”，因为它表示CDATA块的结束。

实体：
实体是XML的存储单元。实体可以包含常用的短语、键盘字符、文件、数据库刻录或任何包含数据的项。
在文档中使用实体可以避免在文档中重复键入长段的文本。可以将一个实体名和文本关联，然后每当需要在文档中放入该文本时，就使用此实体名。处理文档时，该实体名将被替换为指定的文本。
在XML中，有些字符（如<、>或&）可以包括在文本中，但不能以字面格式存在，否则解析器会生成错误。
XML规范定义了一个预定义字符实体集，可以用于取代字符的字面格式。一共有5个这种表示字符的预定义实体，这些字符可能会与XML标记代码混淆，见下表。

[image: image165.png]at; <
> >
& &
ot R

'

使用实体引用将实体插入XML文档。解析器遇到实体引用时，会将引用替换为实体的内容。例如，可以在标记中使用的实体引用，如：

[image: image166.png]"He said, "Don't jurmp out of the window! ">

应写成：

[image: image167.png]<ORDER VALUE="He said, ",Dond't jump out of the window! ", ">

基本上，实体是用于定义常见文本的快捷方式的变量。实体分为两类：一般实体,参数实体。
一般实体：
可以在XML文档中的任何位置出现的实体称为一般实体，实体可以声明为内部实体或外部实体。内部实体仅存在于声明它们的文档中，外部实体则指文档外的存储单元。

一般实体示命名如下：

[image: image168.png]<IENTITY address "BUASSHFFRHIUE ">

替换文本后，该示例会变成：

[image: image169.png]<IENTITY address "HM#iht: ZEREZN B 10 £ 12 8 12 EF">

上面指定的实体是一个内部实体。

外部实体使用一个标识符指向文档外的存储单元。外部实体标识符分为两种类型，SYSTEM（系统）和PUBLIC（公共）。前者用于引用本地计算机（或网络），后者用于引用公共计算机（或网络）。外部实体示例如下：

[image: image170.png]<IENTITY greeting SYSTEM "test txt">

在本例中，XML处理器会将实体引用替换为URI“test.txt”指定的文档内容。“test.txt”文件包含引用实体时要放入的文本。SYSTEM关键字指引解析器在指定URI查找文件。
使用实体引用将实体插入XML文档。实体引用指解锁实体的密钥，已经在实体声明中声明。
语法如下：
[image: image171.png]&ENTITY_NAME

如&address;。
假设将一个地址作为实体保存在共享文件中。每当在XML中写入此地址时，将执行与以下代码相似的操作。
[image: image172.png]<LETTER>+
address, o
<TO>RAB<TO>0
<BOD Y>08B4F|</BOD Y>+
<FROM>522Hf <[FROM>~
<LETTER><

地址将扩展为：
我的地址：美国洛杉矶第10大街12号12套房
管理实体引用的规则包括：
引用实体前，必须先在XML文档中声明该实体。
实体引用不应含有任何空格。例如，“& address;”或“&address ;”将导致错误。
实体引用的文本必须是格式良好的XML文档。
实体引用可以替代常规的字符数据，还可以在标签属性中使用实体引用。例如：

[image: image173.png]<CLIENT="&APTECH;" PRODUCT="&PRODUCT_ID;" QUANTITY="15">.

参数实体：
当实体和实体引用都只需在DTD中出现时，则使用参数实体。参数实体，无论是内部还是外部，都只在DTD中使用。它们不能在文档内容中使用，因为处理器无法识别。

格式良好的参数实体看上去与一般实体相似，区别仅在于前者使用“%”说明符。假设以下示例。

[image: image174.png]<IENTITY % ADDRESS "SciFBETHISE ">,

参数实体引用与一般实体引用相似。在本例中，使用“%”而不是“&”。
[image: image175.png]%PARAMETER_ENTITY_NAME;

稍后会在DTD一节中给出实例。
DOCTYPE声明：
在XML文档中，<!DOCTYPE […]>声明跟在XML声明的后面。实体必须在文档DOCTYPE声明中声明。

语法如下所示：
[image: image176.png]<Psmi version="1.0" 7>

<IDOCTYPE myDac [+
TEMCREFEBASRAE.

<myDoc>e
SHEES..

<fmyDocse

对XML DOCTYPE声明进行编码有助于创建文档（如例2所示）。使用实体时要考虑更改地址的方便性。

[image: image177.png]<?xml version="1.0'
<YDOCTYPE CUSTOMER [
CHENTITY FIRSTFLOOR “BES7F15E1A™>
CHENTITY SECONDFLOOR " 155 24>
B
<1—-CUSTOMERS AR A
<CUSTOMERS>
<5 CUSTOMER HLATEIRIEE >
<CUSTONER>
CNAE> JACKTE C/NANE>
<ADDRESS>&F IRSTFLOOR; </ADDRESS>
<CPHONE>5715746</PHONE>
</CUSTOMER>
<CUSTOMER>
CAME>ARNOLDC/NAIE>
<ADDRESS>&SECONDFLOOR ;</ADDRESS>
<PHONE>6865863¢/PHONE>
</CUSTOMER>
</CUSTOMERS>.

encoding="UTF-§"

例2的输出结果如图1.6所示：
[image: image178.png]2 C:\Documents and Settings\Administrator\Sfii\test. xal

THE @ED SEQ KB TAD #Ho [
Dt - © ¥ @ @ Po= fwmx @ -5
HIE@ - [E)c\Docments and Settings\hdministrator\@lvest xel v| () %3

<74l version="1.0" encoding="UTF-8" 7>
<IDOCTYPE CUSTOMER (View source for full doctype... >
<!-- cUSTOMERS ZMRWS -->
- <CUSTOMERS>
<l-- W& CUSTONER BAWMES -->
- <CUSTOMER>
<NAME>JACKIE</NANE>
<ADDRESS>HET#115% 14</ADDRESS>
<PHONE>5715746</PHONE>
</CUSTOMER>
- <CUSTOMER>
<NAME>ARNOLD</NAE>
<ADDRESS>HE #1155 28 </ADDRESS>
<PHONE>6865863</PHONE>
</CUSTOMER>
</CUSTOMERS>

EED e

在例2中，使用了FIRSTFLOOR和SECONDFLOOR这两个实体引用。实体引用替换常规字符数据，使用以下语句引用该常规字符数据。

[image: image179.png]<ADDRESS>&FIRSTFLOOR, </ADDRESS>

遇到此行时，早先在XML代码的开头声明的整个字符数据都会被替换为字符。
3、 格式良好和有效的XML文档
如果一个XML文档满足了最低的要求集（在定义XML语法的XML 1.0规范中定义），则该文档被视为格式良好。这些要求确保以正确的方式使用正确的词语（在XML规范中定义）。如果文档不满足任何一个良好格式的要求，则将发生致命错误。
有效的XML文档是格式良好的XML文档，符合Document Type Definition（文档类型定义，DTD）的规则。DTD定义了文档中的标记必须遵循的规则，还包含指定文档总体结构的定义以及可以接受的数据内容值的类型。有效的XML文档还符合SGML文档的标准。
至少需要一个元素：
所有格式良好的XML文档都必须至少有一个元素。

XML标签区分大小写：
必须注意确保在标签集使用正确的大小写，也就是说，尽管它们在HTML中表示相同的意思，但<HELLO>和<hello>标签是不一亲的。这是因为XML区分大小写。
应正确使用结束标签：
除了拼写和大小写与开始标签相同，结束标签应该在前面有一个斜杠“/”。因此，在大多数情况下，以<HELLO>作为开始标签，就应该以</HELLO>作为结束标签。在某些时候，结束标签可以省略。尤其是如果需要使用不带内容的标签，则使用带有尾随斜杠的单个开始标签，如<HR/>。

正确嵌套标签：

请注意，XML元素可以包含其他元素，但元素的嵌套必须正确。以下代码中的元素嵌套是错误的。
[image: image180.png]o
<CONTACT>o
<NAME>F A </ NAME>«
<EMAIL>jackie@china com>«
</CONTACT>+

</NAME>~

<EMAIL>«

“

它应该是：

[image: image181.png]<CONTACT>o
<NAME>F A </ NAME>«
<EMAIL>jackis@china com</EMAIL>~
<ICONTACT>¢

应使用合法标签：

标签必须以一个字母、下划线（_）或冒号（:）开始，然后是字母、数字、句号（.）、冒号、下划线或连字符（-）的组合，但不能有空格。标签不应以“xml”开头，因为化是保留字。最好不要将冒号作为标签名称的第一个字符（即使这是合法的），因为它会引起混淆。

标记名称的长度：
尽管XML 1.0标准中规定可以使用任何长度的名称，但实际的XML处理器可能会限制标记名称的长度。XML标签名称的长度取决于处理器。

应定义有效的属性：
标签可以指定许多支持属性。一个标签中的属性不能重复。指定一个名称和值对，以等号（=）分隔，其中，值使用引号分隔。
[image: image182.png]<CAR MODEL="MARUTI 800" COLOR="WHITE">

和HTML不同，XML规定值必须使用引号分隔。在本例中，MODEL和COLOR是CAR标签的属性，“MARUTI 800”是MODEL属性的值，而“WHITE”是COLOR属性的值。
属性命名和标签命名遵循相同的规定。不过，必要时，值可以包含空格、标点和实体引用。
所有值都被视为字符串。因此，如果是标签：

[image: image183.png]<WATER_TANK RADIUS="

* DEPTH="20">-

“5”和“20”会转换为XML环境之外的数值。

应验证文档：
文档应遵循XML规则，否则浏览器或任何其他XML阅读器都无法读取此文档。

4、 XML 文档的编写规则
XML从Standard Generalized Markup Language（标准通用化标记语言，SGML）衍生而来，和SGML一样，它支持使用DTD。文档类型声明和文档类型定义不相同。文档类型定义缩写为DTD。DTD指定了XML文档的语法结构，从而使XML解析器能够理解和解释文档的内容。

更明确地说，DTD定义了元素在文档的树形结构中相关联的方式，并指定了和某些元素一起使用的属性。因此，它也包含可以在文档中包含的元素类型。有效的XML文档就是符合其DTD的文档。DTD以简单文本文件的形式出现，可以存储在独立的文件中，也可以嵌入XML文件。引用DTD的XML文档将包含<!DOCTYPE>声明，此声明包含DTD声明，或指定外部DTD的位置。

为什么使用DTD：
XML提供了以独立方式来共享数据的应用。相互独立的人群可以达成协议，使用通用的DTD来交换数据。应用可以使用标准DTD来验证接收的数据是否有效。DTD可以用于验证自己的数据。在数据交换领域，出现了无数旨在定义标准DTD论坛。DTD的目的在于定义XML文档的合法构建块。它使用一列合法元素来定义文档结构。

DTD结构：
DTD包括许多组件，如DOCTYPE声明、元素声明和属性声明。如前所述，<!DOCTYPE>声明包含了有关DTD位置的信息。一般而言，元素在字典中定义为“复合实体的基本、必要或不可少的要素”，但在不同情况下，它代表不同的对象。在数学中，它是一个集的成员；在化学中，它是由具有相同原子数的原子组成的物质；而在数据库语言(如SQL)中，它表示表中的一个字段。在XML中，元素是文档的一个逻辑组件。在XML文档中声明的每个元素都必须在DTD中具有对应的元素声明，以便在验证时识别身份。同样地，属性在字典中的定义为“用于表示特性、个性或职责的关联对象”。在XML中，它表示元素的特性。一个元素可以包含表示该元素的特性的属性。必须按照在XML文档中声明元素的方法，在DTD中声明属性。总而言之，DTD的一般结构如下所示。
<!DOCTYPE dtd-name [

<!ELEMENT element-name (element-content type)>

<!ATTLIST element-name attribute-name attribute-type

 default-value>

]>
可以在XML文件中声明DTD，也可以将它存储在独立的文件。如果存储在独立的文件，使用.dtd扩展名进行保存。

声明元素：
在DTD中，使用元素声明来声明XML元素。元素声明具有以下语法。
<!ELEMENT element-name (element-content type)>
例如：
<!ELEMENT SHOWROOM (TV|LAPTOP)+>
空元素：
EMPTY元素内容类型指定该元素没有子元素或字符数据。将关键字EMPTY放在指定位置，可以声明空元素。语法如下：
<!ELEMENT element-name EMPTY>
例如：
<!ELEMENT img EMPTY>
空元素可以具有属性。

带有数据的元素：
带有数据的元素是使用它们的数据类型声明的。此数据类型在括号中指定。语法如下：
<!ELEMENT element-name (#CDATA)>

or

<!ELEMENT element-name (#PCDATA)>

or

<!ELEMENT element-name ANY>
例如：
<!ELEMENT note (#PCDATA)>
#CDATA指元素包含不会通过解析器进行解析的字符数据。#PCDATA指元素包含要通过解析器进行解析的数据。ANY指该元素可以包含零个或零个以上任何声明类型的子元素以及字符数据。因此，它是包含所有已声明元素的混合内容的简略表达方式。
带有子元素(序列)的元素：
要定义带有一个或多个子元素的元素，则将子元素的名称放入括号内。语法如下：
<!ELEMENT element-name (child-element-name)>
或
<!ELEMENT element-name (child-element-name,child-element-name,……)>
例如：
<!ELEMENT note (to,from,heading,body)>
如果在一个序列中声明子元素，并用逗号将它们分开，则这些子元素必须以其在文档中的顺序来显示。子元素可以具有自己的子元素。
声明相同的元素只出现一次：
以下示例声明了子元素message，它在note元素中仅出现一次。语法如下：
<!ELEMENT element-name (child-name)>
例如：

<!ELEMENT note (message)>
声明相同的元素至少要出现一次：
以下示例中的“+”符号声明子元素message必须至少在note元素中出现一次。语法如下：
<!ELEMENT element-name (child-name+)>
例如：

<!ELEMENT note (message+)>
声明相同的元素出现零次或多次：
以下示例中的。号声明子元素message可以在note元素中出现零次或多次。语法如下：
<!ELEMENT element-name (child-name*)>
例如：

<!ELEMENT note (message*)>
声明相同的元素出现零次或一次：
以下示例中的“?”号声明子元素message可以在note元素中出现零次或一次。语法如下：
<!ELEMENT element-name (child-name?)>
例如：
<!ELEMENT note (message?)>
声明混合内容：
以下示例声明note元素必须至少包含一个to子元素，有且只有一个from子元素和一个header子元素，具有零个或一个message子元素以及其他已解析的字符数据。

例如：
<!ELEMENT note (to+,from,header,message*)>
组可以是序列或子元素和/或子组的选择。例如：

序列
<!-- 元素A由单个元素B组成。-->

<!ELEMENT A (B)>

<!-- 元素A由元素B加上元素C组成。-->

<!ELEMENT A (B,C)>

<!-- 元素A由包括选择子组的序列组成。-->

<!ELEMENT A (B,(C|D),E)>
选择
<!-- 元素A由元素B或元素C组成。-->

<!ELEMENT A (B|C)>

<!-- 元素A由包括序列子组的选择组成。-->

<!ELEMENT A (B|C|(D,E))>
例3演示如何在DTD中使用元素。它使用外部DTD，本章稍后将详细说明外部DTD。

例3：
<?xml version="1.0" encoding="gb2312"?>

<!DOCTYPE book SYSTEM "Example3.dtd">

<book>

<details>

<name>xml 使用详解</name>

<author>成龙来自&country;</name>

<publication>Mac graw &rights;</publication>

<ptice>&pricenotation;50</price>

</details>

<details>

<name>xml 揭密</name>

<author>Raghu来自&count;</name>

<publication>Mac graw &rights;</publication>

<ptice>&pricenotation;45</price>

</details>

</book>
此文件保存为Example 3.xml。

<?xml version = "1.0" encoding="gb2312"?>

<!ELEMENT book (details+)>

<!ELEMENT details (name, author, publication, price)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT publication (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ENTITY country "中国">

<!ENTITY count "印度">

<!ENTITY rights "版权所有">

<!ENTITY pricenotation "$">
此文件保存为Example 3.dtd。例3的输出结果下图所示。

[image: image184.jpg]IHEO WEO SFW KR TAD #HW

<] O KRG Prr Frww @ ¢

Wt - [2] Bes 0P IB BB E 4 \501-Souwr ce\Bxanple 3. xn1 v | (£ #E

<7l version="1.0" encoding="gb2312" 7>
<IDOCTYPE book (View Source for full doctype... >
- <book>
- <details>
<namesxml #AFER</name>
<author>gk3k 8 PE </author>
<publication>Mac BRI </publication>
<price>$50</price>
</details>
- <details>
<namesxml B </name>
<author>Raghu 3 BRI </authors
<publication>Mac BARB# </publication>
<price>$45</price>
</details>
</book>

EES J EAOER

在例3中使用了外部DTD，DTD通过以下语法声明。

<!DOCTYPE book SYSTEM "Example3.dtd">

在此DTD中，声明哪些元素应用于Example 3.xml。输出结果如上图所示。

<!ELEMENT book (details+)>

<!ELEMENT details (name, author, publication, price)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT publication (#PCDATA)>

<!ELEMENT price (#PCDATA)>

例3中的代码演示了已声明的元素。Book元素有子元素details，details元素有子元素name、author、publication和price。元素中的#PCDATA表示包含要通过解析器进行解析的数据。

<!ENTITY country "中国">

<!ENTITY count "印度">

<!ENTITY rights "版权所有">

<!ENTITY pricenotation "$">
例3中的代码演示了在XML代码中声明的各种实体。每当遇到该实体名称时，将会替换分号中的字符。

属性声明：
在以下示例中，将元素square定义为空元素，width属性类型为CDATA，width属性的默认值为0。而后，把width属性值赋为100。

DTD示例：
<!ELEMENT square EMPTY>

<!ATTLIST square width CDATA "0">
XML示例：
<square width="100">/square>
Default属性值：
为属性指定一个默认值，确保即使XML文档的作者不提供值，该属性也将获取一个值。语法如下：
<!ATTLIST element-name attribute-name CDATA "default-value">
DTD示例：
<!ATTLIST payment type CDATA "check">
XML示例：
<payment type="check">

Implied属性值：
如果开发人员不希望强迫作者提供属性，而且也没有默认值选项，则他们需要使用implied属性。语法如下：
<!ATTLIST element-name attribute-name attribute-type #IMPLIED>
DTD示例：
<!ATTLIST contact fax CDATA #IMPLIED>
XML示例：
<contact fax="222-899877"/>
Required属性值：
如果没有默认值，但仍然希望在文档中出现此属性，则使用required属性。语法如下：
<!ATTLIST element-name attribute-name attribute-type #REQUIRED>
DTD示例：
<!ATTLIST person number CDATA #REQUIRED>
XML示例：
<person number="6787"/>
Fixed属性值：
如果希望属性具有固定值，使作者不能更改，则使用fixed属性值。如果作者提供其他值，XML解析器将返回一个错误。语法如下：
<!ATTLIST element-name attribute-name attribute-type #FIXED "value">
DTD示例：
<!ATTLIST sender company CDATA #FIXED "Microsoft">
XML示例：
<sender company="Microsft"/>
Enumerated属性类型：
希望属性值成为一组固定合法值的一员时，使用enumerated属性值。语法如下：
<!ATTLIST element-name attribute-name (eval|eval|..) default-value)>
DTD示例：
<!ATTLIST payment type (支票|现金) "现金">
XML示例：
<payment type="支票">
或

<payment type="现金">
ID和IDREF属性类型：
ID是标识符类型，它应该是唯一的。该属性值用于搜索某个元素的特定实例。每个元素都可以具有ID类型的一个属性。语法如下：
<!-- Topicid属性提供Topic元素的ID-->

<!ATTLIST Topic Topicid ID #REQUIRED>

……
<Topic Topicid="Topic4">

 此Topic是XML

</Topic>
IDREF也是标识符类型，它应只指向一个元素。IDREF属性可用于引用其他元素中的一个元素，如以下代码所示。
……
<!-- Prev和Next属性指向另一元素的ID-->

<!ATTLIST Topic Topicid ID #REQUIRED>

<!ATTLIST Topic Prev IDREF #IMPLIED>

<!ATTLIST Topic Next IDREF #IMPLIED>

……
<Topic Topicid="Topic4" Prev="Topic3" Next="Topic8">

 <!-- Topics 5-7 丢失-->

 此Topic是XML

</Topic>

……

IDREFS属性类型：
此属性将多个元素ID作为它的值，各个IDREF值之间用空格分开。它用于指向XML文档中的相关元素列表，如以下代码所示。
……
<!ATTLIST Topic Topicid ID #REQUIRED>

<!ATTLIST Topic Prev IDREF #IMPLIED>

<!ATTLIST Topic Next IDREF #IMPLIED>

<!ATTLIST Topic Xrefs IDREFS #IMPLIED>

……
<Topic Topicid="Topic4" Prev="Topic3" Next="Topic8"

 Xrefs="Topic1 Topic2">

 <!--Topics 5-7 丢失-->

 此Topic是XML

</Topic>

……

ENTITY和ENTITIES：
这些属性指向以未解析实体(解析器无法处理的实体)形式存在的外部数据。语法如下所示。
<!--属性a指向单个未解析实体-->

<!ATTLIST A a ENTITY #IMPLIED>

<!--属性b指向多个未解析实体-->

<!ATTLIST A b ENTITIES #IMPLIED>
NMTOKEN和NMTOKENS：
它们用于指定任何有效的一个或多个XML名称。将其他组件与元素(如Java类或安全算法)关联时，可以使用这些属性。这些属性以单个/多个记号作为值，如以下代码所示。
<!ATTLIST Data Authorised_Users NMTOKENS #IMPLIED>

<Data SECURITY="ON" Authorised_Users="Tom">

……
</Data>

……

DTD示例：
DTD定义生成自定义标签的语言的规则。在一个DTD中定义每个元素的详细信息、它们的顺序以及每个元素的属性。DTD分为两种类型。
内部DTD：
在XML文档的XML声明后直接编写内部DTD。应该在DOCTYPE定义中编写内部DTD，如示例所示，这称为包装。语法如下：
<!DOCTYPE root-element [element-declarations]>
例4演示如何使用内部DTD。

例4：
<?xml version="1.0" encoding="gb2312"?>

<!DOCTYPE movies

[

<!ELEMENT movies (movie+)>

<!ELEMENT movie (title,actor+,rating)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT actor (#PCDATA)>

<!ELEMENT rating (#PCDATA)>

<!ATTLIST movie type CDATA #IMPLIED>

]

>

<movies>

 <movie type="冒险片">

 <title> 空中监狱 </title>

 <actor> 尼古拉斯 凯奇</actor>

 <rating>家长指引</rating>

</movie>

<movie type="恐怖片">

 <title> 幽灵 </title>

 <actor> 黛米 摩尔</actor>

 <actor> 帕特里克 斯韦兹</actor>

 <rating>家长指引</rating>

</movie>

</movies>
对于内部DTD，DTD代码和XML代码包含在一个文档中。该文件的扩展名为.xml（如Example 4.xml）。在例4中，DOCTYPE语句表示Document Type Declaration（文档类型声明），而方括号中的语句，则表示Document Type Definition（文档类型定义）。这可能会产生混淆，但从上下文来看就很清楚指的是哪种意思。格式良好的XML文档必须包含至少一个根元素，即单个元素声明。另外，在声明中指定的DOCTYPE名称必须与该根元素匹配，在本例中为movies。

外部DTD：
外部DTD在文档内容之外，并带有扩展名.dtd。在XML文件的开头添加的DTD引用告诉XML处理器在哪里查找外部DTD、关于其作者的信息、DTD的目的以及使用的语言。外部DTD在XML文件的开头通过SYSTEM关键字引用。将外部DTD声明至XML文档的语法如下所示。
<?xml version="1.0"?>

<!DOCTYPE movies SYSTEM "Example 5.dtd">
在本例中，Example 5.dtd是在文档内容之外的外部DTD，并带有必需的扩展名.dtd。
例5：
<?xml version="1.0" encoding="gb2312" ?>

<!DOCTYPE movies SYSTEM "Example5.dtd">

<movies>

 <movie type="冒险片">

 <title> 空中监狱 </title>

 <actor> 尼古拉斯 凯奇</actor>

 <rating>家长指引</rating>

</movie>

<movie type="恐怖片">

 <title> 幽灵 </title>

 <actor> 黛米 摩尔</actor>

 <actor> 帕特里克 斯韦兹</actor>

 <rating>家长指引</rating>

</movie>

</movies>
此文件保存为Example 5.xml。外部DTD由文件Example 5.DTD提供。

<?xml version="1.0" encoding="gb2312" ?>

<!ELEMENT movies (movie+)>

<!ELEMENT movie (title,actor+,rating)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT actor (#PCDATA)>

<!ELEMENT rating (#PCDATA)>

<!ATTLIST movie type CDATA #IMPLIED>
DTD中的内部实体声明：
内部实体的内容在XML文档中出现。语法如下：
<!ENTITY entity-name "entity-value">
DTD示例：
<!ENTITY writer "查尔斯·狄更斯">

<!ENTITY copyright "Copyright XML101.">
XML示例：
<author>&writer;©right;</author>
DTD中的外部实体声明：
外部实体指内容在XML文档之外的实体。SYSTEM关键字用于指定所有在文档之外的实 体。语法如下：
<!ENTITY entity-name SYSTEM "URI/URL">
在以下示例中，XML处理器将实体引用替换为指定文档的内容。
<!ENTITY writer SYSTEM "http://www.xml101.com/entities/entities.xml">

<!ENTITY copyright SYSTEM "http://www.xml101.com/entities/entities.dtd">
XML示例：
<author>&writer;©right;</author>
DTD中的参数实体：
只在DTD文档中出现。

DTD示例：
……
<!ENTITY % p "a">

<!ELEMENT roster ((%p;)+)>

<!ELEMENT %p; (name,...)>

……

其中p是参数实体，a是p的省略值。根据p值的不同，DTD中roster子元素也不同。下面是参数实体的一个具体应用，两个不同元素的XML文件共同关联一个DTD文件。第一个XML文件是学生花名册，保存为Example 6.xml。

例6：

<?xml version="1.0" encoding="gb2312" ?>

<!DOCTYPE roster SYSTEM "Example 6.dtd" [

<!ENTITY % p "student">

]>

<roster>

<student ID="s101">

<name>李华</name>

<sex>男</sex>

<birthday>1978.9.12</birthday>

<score>98</score>

<skill>Java</skill>

<skill>Oracle</skill>

<skill>C Sharp</skill>

<skill>SQL Server</skill>

</student>

</roster>
上面代码先用内部DTD声明，把参数实体p设为student，再引用外部DTD验证。

第二个XML文件是教师花名册，保存为Example 7.xml
例7：

<?xml version="1.0" encoding="gb2312" ?>

<!DOCTYPE roster SYSTEM "Example 6.dtd" [

<!ENTITY % p "teacher">

]>

<roster>

<teacher ID="t101">

<name>张老师</name>

<sex>女</sex>

<birthday>1968.3.1</birthday>

<skill>Java</skill>

<skill>Oracle</skill>

<skill>C Sharp</skill>

<skill>SQL Server</skill>

</teacher>

</roster>
上面代码先用内部DTD声明，把参数实体p设为teacher，再引用外部DTD验证。

以上两个XML文件用同一个DTD验证，DTD代码保存在Example 6.dtd中，见如下实例。
<?xml version="1.0" encoding="gb2312"?>

<!ENTITY % p "a">

<!ELEMENT roster ((%p;)+)>

<!ELEMENT %p; (name,sex,birthday,score?,skill+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT sex (#PCDATA)>

<!ELEMENT birthday (#PCDATA)>

<!ELEMENT score (#PCDATA)>

<!ELEMENT skill (#PCDATA)>

<!ATTLIST %p; ID #REQUIRED>
5、 命名空间
命名空间是在XML文档中可以用作元素或属性名称的名称集合，它们标识来自特定域（标准组织、公司、行业）的名称。命名空间使浏览器可以执行以下操作。

· 组合来自不同源的文档，并有助于识别元素或属性的源。

· 访问DTD或用于验证文档的元素和属性的其他描述。

Uniform Resource ldentifier（统一资源标识符，URl）识别XML的命名空间。URI包括Uniform Resource Name（统一资源名称，URN）和Uniform Resource Locator（统一资源定位符，URL）。URL包含对Web上的某个文档或HTML页面的引用。URN是标识Internet资源的全球唯一编号。

例如：有3个名为batch的元素。第一个batch指Aptech培训中心的一批学员，第二个batch指一批产品，而第三个batch指一批游客。可以使用唯一的URl标识batch元素。第一个batch与Aptech计算机教育的URl关联，第二个batch与茶业URl关联，第三个batch与旅游的域URI关联。要在文档中使用该元素，可以使用以下语法。
http://www.Aptech_edu.ac.batch

http://www.tea.org.batch

http://www.digicam.org.batch
要通过这种方式逐个引用元素十分麻烦。

命名空间的必要性：
人们开始重用和扩展标准的DTD时，因为文档交换，所以对于重名的元素，XML解析
器可能出现冲突。如果使用DTD中已经存在的元素或属性名称宋扩展该DTD，解析器将无法获知正在使用的是哪一个。命名空间有助于标准化元素和属性，并为它们加上唯一的标志。

命名空间确保元素名称没有冲突，并阐明它们的来源，但它们不确定如何处理元素。XML解析器必须知道元素的意义以及如何处理它们。
命名空间的语法：
将一个前缀与可以用作命名空间的URl关联，如下所示。
xmlns:[prefix]="[命名空间的URI]"

xmlns：是保留属性。由于xml是保留的字符串，它不能用作前缀名称的开头，可以使用XML标签中允许的任何其他字符。前缀用作命名空间的别名。例如：
例8：
<?xml version='1.0' encoding="gb2312"?>

<cameras xmlns:digital="http://www.digicam.org"

 xmlns:photo="http://www.photostudio.org">

 <digital:camera prodID="P663" name="傻瓜相机"

 pixels="410000" output_res="640 x 480" int_mem="2 MB"

 price="300.99"/>

 <photo:camera productID="K29B3" name="超级 35 毫米照相机"

 lens="35 毫米" zoom="70 毫米" warranty="1 年" price="99.00"/>

</cameras>

在以上XML代码中，有关数码相机的信息属于digital命名空间，而有关传统相机的信息则属于photo命名空间。这样就能够根据两种相机的特定类型验证和处理它们的信息，使数据更灵活和精确。

请注意，尽管前缀(digital和photo)只在元素名称中出现，但该元素的属性也属于该元素的命名空间。这意味着digital:camera元素上的所有属性也属于digital空间。

属性和命名空间：
除非带有前缀，否则属性属于它们的元素的命名空间。
……

<ins:batch ins:type="thirdbatch">夜班</ins:batch>

<ins:batch type="firstbatch">早班</ins:batch>

<ins:batch>下午班</ins:batch>

</ins:batch-list>

……

在以上代码中，两个属性均视为属于相同的命名空间。
……
xmlns="http://www.Aptech_edu.ac"

xmlns:tea_betch="http://www.tea.org">

<batch-list>

<batch type="thirdbatch">夜班</batch>

<batch tea_batch:type="thirdbatch">第三批茶</batch>

<batch>下午班</batch>

……

在上面代码中，属于"http://www.Aptech_edu.ac"命名空间的batch元素拥有茶业领域（"http://www.tea.org"命名空间）的tea_batch:type属性。

可以包括两个名称相同但属于不同命名空间的属性，如下所示。
<batch type="firstbatch" tea_batch:type="firstbatch">第一批茶</batch>
命名空间应用：

以下示例演示了如何应用两个命名空间，分别是http://www.Aptech_edu.org和
http://www.tea.org。源文件是Example 9.xml。

例9：

<?xml version="1.0" encoding="gb2312" ?>

<sample xmlns:ins="http://www.Aptech_edu.org"

xmlns:tea="http://www.tea.org">

<ins:batch-list>

 <ins:batch>夜间培训批次</ins:batch>

 <ins:batch>早间培训批次</ins:batch>

 <ins:batch>午间培训批次</ins:batch>

 <ins:batch>

 第一批茶<tea:batch>批号 333 </tea:batch>

 </ins:batch>

 <ins:batch>

 第二批茶<tea:batch>批号 222 </tea:batch>

 </ins:batch>

</ins:batch-list>

</sample>
上述代码是一个批次列表，但来自两个领域。

一个是培训领域，命名空间是"http://www.Aptech_edu.org"，前缀是ins。

另一个是茶叶领域，命名空间是"http://www.tea.org"，前缀是tea。

Batch-list是批次列表。

在例9中，除了那些具有tea前缀的元素，所有3个batch都属于ins代表的命名空间。
这样就能够根据tea的两个batch的特定类型来验证和处理它们的信息，使数据更灵活和精确。
第十章　用样式表格式化显示

本章目标：了解 XML 的应用范围
了解XML的文档结构

 理解格式正规的 XML 文档的特点

 熟悉有效的 XML 文档的编写规则

 理解命名空间
本章重点：熟悉有效的 XML 文档的编写规则

本章难点：理解命名空间

6、 XML的应用范围
人类一直在不断地尝试改进自己的发明，其中也包括人类最伟大的发明——文字的构成。第一个文本处理系统是用纸笔记录文字。现在，计算机文本处理器已经取代了手工处理，它不仅包含原始文档，还负责设置格式、出版和管理。在这些方便的功能整合到字处理之前，是由排字工人遵循书面标记说明来完成所有格式编排的。正是利益于这种实践，人们将“标记”这个词加入到HTML和XML。顾名思义，标记是指加上记号。文本处理环境（如XML）中使用了相同的标记过程。本意讲述标记语言的历史和创建XML文档的方法。
使用脚本语言或DHTML能够以各种方式显示信息。这就要求必须为相同的输出编写不同的代码以供不同的浏览器使用，因为这些语言不能跨浏览器兼容。
XML（eXtensible Markup Language，可扩展标记语言）克服了这些缺点。顾名思义，XML是可扩展的，即开发人员可以定义自己的一组标签，并使其他的人或程序能够理解这些标签。HTML是单标记语言，为特定应用设计，而XML则是一系列的标记语言。因此，XML比HTML灵活得多。实际上，由于XML标签表示了数据的逻辑结构，不同的应用可以通过不同的方式来解释和使用这些标签。Web上的数据大多是继承的，XML继承了SGML和HTML的优点。也就是说，它不仅继承了SGML的特色，还结合了HTML的特色。它采用了SGML的主要框架，有时，人们也将XML称为SGML的子集。因此，HTML是SGML的应用，而XML是SGML的子集。下图显示了标记语言的层次结构。
<html>

<body>

<form>

<select name="cars">

<option value="volvo">Volvo

<option value="saab">Saab

<option value="fiat">Fiat

<option value="audi">Audi

</select>

</form>

</body>

</html>

2
105

