import javax.swing.*;    //时钟
import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.*;

import java.util.Calendar;

import java.util.GregorianCalendar;

class Clock extends JFrame implements ActionListener
{      int x,y,x0,y0,r,h,olds_x,olds_y,oldm_x,oldm_y,oldh_x,oldh_y,ss,mm,hh,old_m,old_h,ang;

       final double RAD=Math.PI/180;   //度数转换成弧度的比例 

       //构造函数创建了一个窗体

       public Clock()
{   super("时钟");  //设置标题

           setSize(250,250);  //设置窗口尺寸

           setBackground(Color.WHITE);  //设置背景颜色

           setLocation(300,150);   //设置窗口位置坐标

           setResizable(false);  //使窗口可以最小化和关闭，但是不能任意改变大小

           setVisible(true);  //设置组建可见

           int delay = 100;  //设置延时

           //创建一个监听事件

           ActionListener drawClock = new ActionListener()

           {   public void actionPerformed(ActionEvent evt)  {  repaint(); }  }; 
           new Timer(delay,drawClock).start();   //创建时间计数器，每秒触发一次

       }

       public void actionPerformed(ActionEvent e){//实现ActionListener接口必须实现的方法}

       //绘制图形

       public void paint(Graphics g)
{

           Graphics2D g2D = (Graphics2D)g;

           Insets insets = getInsets();

           int L = insets.left/2,T = insets.top/2;

           h = getSize().height;

           g.setColor(Color.black);

           //画圆

           g2D.setStroke(new BasicStroke(4.0f));

           g.drawOval(L+40,T+40,h-80,h-80);

           r=h/2-40;

           x0=40+r-5+L;

           y0=40+r-5-T;

           ang=60;

           //绘制时钟上的12个数字

           for(int i=1;i<=12;i++){

               x=(int)((r-9)*Math.cos(RAD*ang)+x0);

               y=(int)((r-9)*Math.sin(RAD*ang)+y0);

               g.drawString(""+i,x,h-y);

               ang-=30;

           }

           //获得当前系统时间

           Calendar now= new GregorianCalendar();

           int nowh= now.get(Calendar.HOUR_OF_DAY);

           int nowm= now.get(Calendar.MINUTE);

           int nows= now.get(Calendar.SECOND);

           String st;

           if(nowh<10) st="0"+nowh;else st=""+nowh;

           if(nowm<10) st+=":0"+nowm;else st+=":"+nowm;

           if(nows<10) st+=":0"+nows;else st+=":"+nows;

           //在窗体上显示时间

           g.setColor(Color.white);//

           g.fillRect(L,T,50,28);//

           g.setColor(Color.black);//

           g.drawString(st,L+2,T+26);//

           //计算时间与度数的关系

           ss=90-nows*6;

           mm=90-nowm*6;

           hh=90-nowh*30-nowm/2;

           x0=r+40+L;

           y0=r+40+T;

           g2D.setStroke(new BasicStroke(1.0f));//秒针粗细

          //擦除秒针

           if(olds_x>0)
{

               g.setColor(getBackground());

               g.drawLine(x0,y0,olds_x,h-olds_y);

           }

           Else
{

               old_m = mm;

               old_h = hh;

           }

         //绘制秒针

           x=(int)(r*0.9*Math.cos(RAD*ss))+x0;//长度

           y=(int)(r*0.9*Math.sin(RAD*ss))+y0-2*T;

           g.setColor(Color.black);//指针颜色

           g.drawLine(x0,y0,x,h-y);//轨迹

           olds_x=x;

           olds_y=y;

           g2D.setStroke(new BasicStroke(2.2f));//分针粗细

         //擦除分针

           if(old_m!=mm)
{

               g.setColor(getBackground());

               g.drawLine(x0,y0,oldm_x,h-oldm_y);

               }

           //绘制分针

           x=(int)(r*0.7*Math.cos(RAD*mm))+x0;//长度

           y=(int)(r*0.7*Math.sin(RAD*mm))+y0-2*T;

           g.setColor(Color.red);//颜色

           g.drawLine(x0,y0,x,h-y);

           oldm_x=x;

           oldm_y=y;

           old_m=mm;

           g2D.setStroke(new BasicStroke(3.4f));//时针粗细

           //擦除时针

           if(old_h!=hh)
{

               g.setColor(getBackground());

               g.drawLine(x0,y0,oldh_x,h-oldh_y);

               }

           //绘制时针

           x=(int)(r*0.5*Math.cos(RAD*hh))+x0;//长度

           y=(int)(r*0.5*Math.sin(RAD*hh))+y0-2*T;

           g.setColor(Color.red);//颜色

           g.drawLine(x0,y0,x,h-y);

           oldh_x=x;

           oldh_y=y;

           old_h=hh;

           }

       public static void main(String[] args){   Clock c = new Clock();  }       

   }
3D
import java.applet.Applet;

import java.awt.BorderLayout;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.geometry.*;

import com.sun.j3d.utils.universe.*;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.behaviors.mouse.MouseRotate;

import com.sun.j3d.utils.behaviors.mouse.MouseZoom;

import com.sun.j3d.utils.behaviors.mouse.MouseTranslate;

public class AWTFrameJ3D 
{  private static final long serialVersionUID = 1L;
                            Canvas3D cv = null;
    public static void main(String s[]) 
    {   AWTFrameJ3D hd = new AWTFrameJ3D();
        hd.constractJava3D();
    }
    /*构造方法 创建Frame和Canvas3D画布对象，并将Canvas3D嵌入到Frame中*/
    public AWTFrameJ3D()
   {

        GraphicsConfigTemplate3D template = new GraphicsConfigTemplate3D();

        GraphicsEnvironment env = GraphicsEnvironment

                .getLocalGraphicsEnvironment();

        GraphicsDevice device = env.getDefaultScreenDevice();

        GraphicsConfiguration config = device.getBestConfiguration(template);

        // 新建Canvas3D对象，Canvas3D对象是一个用于显示虚拟世界场景的绘制结果的画布

        cv = new Canvas3D(config);

        // 新建Frame对象

        Frame dframe = new Frame(config);

        dframe.setTitle("模型读取中");

        dframe.setLayout(new BorderLayout());

        // 将Canvas3D对象嵌入到Frame对象中

        dframe.add(cv, BorderLayout.CENTER);

        dframe.setSize(500, 400);

        // 添加窗口监听器实现关闭窗口（Frame），关闭窗口时退出程序

        dframe.addWindowListener(new WindowAdapter() 

        {    public void windowClosing(WindowEvent ev) 

              {  System.out.print("退出程序！");

                 System.exit(0);

               } }

   };

        // 使用Toolkit更改Java应用程序标题栏默认图标

        Toolkit tk = Toolkit.getDefaultToolkit();

        Image image = tk.createImage("images/earth.jpg"); /* image.gif是你的图标 */

        dframe.setIconImage(image);

        // 使用Toolkit把默认的鼠标图标改成指定的图标：

        // Toolkit tk=Toolkit.getDefaultToolkit();

        Image img = tk.getImage("images/earth.jpg"); /* mouse.gif是你的图标 */

        Cursor cu = tk.createCustomCursor(img, new Point(10, 10), "stick");

        dframe.setCursor(cu);
        // 现将Frame窗口可视化之后，再绘制3D场景内容

        dframe.setVisible(true);

    }
    /**构建3D虚拟世界场景*/

    public void constractJava3D()

      { // 创建场景图分支

        BranchGroup bg = createSceneGraph();

        bg.compile();

        // 将观察分支关联到一个Canvas3D对象，以显示视图的绘制结果

        SimpleUniverse su = new SimpleUniverse(cv);

        su.getViewingPlatform().setNominalViewingTransform();

        // 把场景图关联到SimpleUniverse对象之后，整个场景就开始绘制了

        su.addBranchGraph(bg);

        // 现绘制3D场景内容，再将Frame窗口可视化

        // dframe.setVisible(true);

     }

    /**创建3D场景内容*/

    private BranchGroup createSceneGraph() 

     {   // 创建BranchGroup对象作为根节点

         BranchGroup root = new BranchGroup();

         // object

         Appearance ap = new Appearance();

         ap.setMaterial(new Material());

         Font3D font = new Font3D(new Font("SansSerif", Font.PLAIN, 1),

                new FontExtrusion());

         Text3D text = new Text3D(font, "Hello 3D");

         Shape3D shape = new Shape3D(text, ap);

         // transformation

         Transform3D tr = new Transform3D();

         tr.setScale(0.5);

         tr.setTranslation(new Vector3f(-0.95f, -0.2f, 0f));

         TransformGroup tg = new TransformGroup(tr);

        root.addChild(tg);

        tg.addChild(shape);

        // light

        PointLight light = new PointLight(new Color3f(Color.white),

                new Point3f(1f, 1f, 1f), new Point3f(1f, 0.1f, 0f));

        BoundingSphere bounds = new BoundingSphere();

        light.setInfluencingBounds(bounds);

        root.addChild(light);

        return root;

    }

}
[image: image1.png]2] meh
13.08:51





