
即用即查——JavaScript 核心对象

参考手册

丛书特点：直击核心技术 解惑应用开发
� 案头必备、内容实用
� 排版精准、图文并茂
� 光盘中提供了索引，方便快速查找

书名：即用即查——JavaScript核心对象参考手册
作者：韩延峰 编著
书号：978-7-115-16140-6
定价：49
开本：185×260 1/16
印张：27.75
总页码：442
印刷色别：单
有无光盘：1CD
选题类别：网络开发
预计出版时间：2007年 5月

本书讲述：

¾ 15个 JavaScript对象
¾ 372个属性方法
¾ 307个实例源文件
¾ 7个附录

内容涵盖：

¾ JavaScript开发基础：51个实例
¾ 创建和使用自定义对象：7个实例
¾ Date对象：23个实例
¾ String对象：27个实例
¾ Math对象：26个实例
¾ 数组与 Array对象：18个实例
¾ RegExp、Object、Error、Number对象：22个实例
¾ Form对象：14个实例
¾ Window对象：39个实例
¾ 事件及事件响应：19个实例
¾ ActiveX技术：5个实例
¾ 文件访问对象：31个实例
¾ 数据库访问：25个实例

技术深度：（初、中）
目标受众：
□ 从事Web应用开发的人员；

□ JavaScript初学者；
□ 网页设计与制作人员；
□ 网页制作爱好者；
□ 大中专院校爱好 IT的学生。

内容提要：
本书是一本 JavaScript核心对象的速查手册，其中穿插丰富的实例。本书内容涵盖了 JavaScript基础知

识、常用对象、DOM对象以及 ActiveX等高级应用的各方面知识。涉及 Date对象、String对象、Math对

象、Array对象、Function对象、Number对象、Object对象、Form表单、Document对象、Window对象等。

本书适合 JavaScript初学者、JavaScript程序员以及其他Web应用程序工程技术人员阅读，同时也特别适合

想学习Ajax技术的读者。

目录：

样章：

目录：

上篇 JavaScript开发入门

第 1章 JavaScript简介：介绍 JavaScript基础知识 3

1.1 什么是 JavaScript 3

1.2 JavaScript功能简介 4

1.2.1 客户端 JavaScript 4

1.2.2 服务器端 JavaScript 5

1.3 JavaScript的版本以及支持它的浏览器 6

1.4 JavaScript和事件 6

1.5 在哪里编写 JavaScript代码 7

1.6 使用包含在外部文件中的 JavaScript代码 7

1.7 如何兼容不支持 JavaScript的浏览器 8

1.7.1 使用 HTML注释 8

1.7.2 使用<noscript>标记 9

第 2章 JavaScript基础：介绍 JavaScript基本规则 10

2.1 JavaScript代码的编写和执行 10

2.2 语法规则 11

2.2.1 大小写 11

2.2.2 代码书写格式 11

2.2.3 保留字 12

2.2.4 注释 13

2.2.5 <script>标记 13

2.3 动态生成页面内容 14

2.3.1 字符串及其拼接方法 14

2.3.2 document对象的 write()和 writeln()方法 15

2.4 代码的调试方法与技巧 16

2.4.1 错误类型 16

2.4.2 调试工具 16

2.4.3 预防错误的方法 17

第 3章 数据类型和变量：变量基础知识 18

3.1 数据类型 18

3.1.1 数字基本类型 18

3.1.2 字符串基本类型 20

3.1.3 布尔值基本类型 23

3.1.4 对象 23

3.1.5 数组 24

3.1.6 Null：表示“无”的特殊值 25

3.1.7 undefined：表示对象属性不存在或变量未赋值的特殊值 25

3.2 变量 26

3.2.1 变量的命名 26

3.2.2 变量声明和变量初始化 26

3.2.3 变量类型的动态变化 28

3.2.4 变量的作用域 29

3.3 释放无用空间的问题 31

第 4章 与用户交互的基本方法：JavaScript交互方式 32

4.1 显示信息对话框的 alert()方法 32

4.2 显示确认选择对话框的 confirm()方法 33

4.3 显示提示对话框的 prompt()方法 34

第 5章 运算符：介绍 JavaScript各种运算符及作用 36

5.1 表达式和运算符概述 36

5.2 赋值运算符 38

5.3 算术运算符 38

5.3.1 基本算术运算符 38

5.3.2 增量/减量运算符 41

5.3.3 字符串拼接运算符 43

5.4 关系运算符 44

5.4.1 比较运算符 44

5.4.2 in运算符 45

5.4.3 instanceof运算符 45

5.5 逻辑运算符 46

5.5.1 逻辑与运算符 && 46

5.5.2 逻辑或运算符 || 47

5.5.3 逻辑非运算符 ! 48

5.6 位运算符 48

5.7 其他运算符 50

5.8 运算符的优先级和结合方式 53

5.8.1 运算符的优先级 53

5.8.2 运算符的结合方式 53

5.9 数据类型转换 54

5.9.1 基本数据类型转换 54

5.9.2 提取整数的 parseInt()方法 55

5.9.3 提取浮点数的 parseFloat()方法 55

5.9.4 用于执行语句和计算表达式的 eval()方法 55

第 6章 条件和循环语句：JavaScript最基本的语句结构 57

6.1 条件语句 57

6.1.1 条件赋值语句 57

6.1.2 if／if_else条件语句 58

6.1.3 switch条件语句 60

6.2 循环语句 62

6.2.1 while语句 62

6.2.2 do...while语句 64

6.2.3 for语句 65

6.2.4 for…in语句 67

6.2.5 控制循环执行过程——break和 continue语句 67

6.2.6 循环的嵌套 69

6.3 应用举例 70

6.3.1 数组排序 70

6.3.2 素数与闰年问题 72

6.3.3 公式计算问题 74

第 7章 函数：与函数相关的方方面面 76

7.1 什么是函数 76

7.2 定义函数和使用函数 76

7.3 函数参数的传递 77

7.4 函数中变量的作用域与函数的返回值 78

7.4.1 函数中变量的作用域 78

7.4.2 函数的返回值 79

7.5 函数的高级用法——递归与嵌套 80

7.5.1 递归函数 80

7.5.2 函数的嵌套 81

7.6 编写和使用函数过程中常见的错误 83

7.7 JavaScript中的全局函数 83

7.7.1 parseInt() 83

7.7.2 parseFloat() 84

7.7.3 isNaN() 84

7.7.4 isFinite() 85

7.7.5 encodeURI() 85

7.7.6 decodeURI() 86

7.7.7 encodeURIComponent 87

7.7.8 decodeURIComponent() 87

7.7.9 escape() 87

7.7.10 unescape() 88

第 8章 创建和使用自定义对象：介绍自定义对象的方法 89

8.1 对象的概念 89

8.2 对象创建与对象的属性和方法 89

8.2.1 使用构造函数创建对象 89

8.2.2 对象的属性和方法 90

8.3 定义对象 92

8.3.1 new()运算符和 Object()构造函数 92

8.3.2 通过函数创建对象 93

8.3.3 定义对象方法 93

8.4 使用和访问对象 95

8.4.1 使用 with关键字访问对象成员 95

8.4.2 使用 for…in循环操作对象 96

中篇 JavaScript核心及 DOM对象

第９章 Date对象：操作日期时间 101

9.1 Date对象的方法 101

9.1.1 getFullYear方法：返回 Date对象中用于表示完整年份的数字 102

9.1.2 getYear方法：获取 Date对象中的年份 102

9.1.3 getMonth方法：返回 Date对象中存储的月份 103

9.1.4 getDate方法：返回 Date对象中所存储的某一月份中的日期 103

9.1.5 getDay方法：返回 Date对象中存储的日期所对应的周次 104

9.1.6 getHours方法：以 24小时制返回 Date对象中所存储的小时值 105

9.1.7 getMinutes方法：返回 Date对象中所存储的时间中的分钟值 105

9.1.8 getSeconds方法：返回 Date对象中所存储的时间中的秒钟值 106

9.1.9 getTime 方法：返回 Date 中存储的时间距 1970 年 1 月 1 日午夜的时间差

 106

9.1.10 getMilliseconds方法：返回 Date对象中所存储的时间中的毫秒数 107

9.1.11 getUTC方法：返回 UTC日期或时间值 107

9.1.12 setFullYear方法：设置 Date对象中的年份值 108

9.1.13 setYear方法：设置 Date对象中的年份 109

9.1.14 setMonth方法：设置 Date对象中的月份值 109

9.1.15 setDate方法：设置 Date对象中的日期值 110

9.1.16 setHours方法：设置 Date对象中的小时值 110

9.1.17 setMinutes方法：设置 Date对象中所存储的分钟数 111

9.1.18 setSeconds方法：设置 Date对象中的秒钟值 111

9.1.19 setUTC方法：以格林威治日期或时间对 Date对象进行设置 112

9.1.20 getTimezoneOffset方法：返回当地时间与 UTC时间的差值 112

9.1.21 toDateString方法：将 Date对象中的日期转换为字符串格式 113

9.1.22 toUTCString方法：返回一个以 UTC时间表示的时间字符串 114

9.1.23 toGMTString方法：返回一个以 GMT惯例表示的日期字符串 114

9.1.24 toLocaleString方法：将 Date对象中的时间转化为时间字符串 115

9.1.25 toLocaleDateString方法：返回 Date对象中的日期字符串 115

9.1.26 toTimeString方法：以字符串的格式返回 Date对象中所存储的时间 116

9.1.27 toLocaleTimeString方法：将 Date对象中的时间转化为时间字符串 116

9.1.28 toString方法：将 Date对象中存储的日期时间信息转化为字符串信息 117

9.1.29 parse方法：计算指定时间距 1970年 1月 1日午夜的时间差 117

9.2 Date对象的属性 118

9.2.1 prototype属性：将新定义的属性或方法添加到 Date对象中 118

9.2.2 constructor属性：指向创建当前对象的构造函数 119

9.3 使用 Date对象 120

第 10章 String对象：操作字符串 121

10.1 字符串概述 121

10.2 String对象的方法 123

10.2.1 anchor方法：在字符串两端加入锚点标志 123

10.2.2 big方法：在指定字符串的两端加上大字体标志 124

10.2.3 bold方法：在字符串的两端加上粗体标志 125

10.2.4 charAt方法：返回字符串中指定位置处的字符 125

10.2.5 charCodeAt方法：返回指定位置的字符的 Unicode编码 126

10.2.6 concat方法：将一个或多个字符串连接到当前字符串的末尾 128

10.2.7 fixed方法：在字符串的两端加上固定宽度字体标记 128

10.2.8 fontcolor方法：设置字符串输出时的前景色 129

10.2.9 fontsize方法：设置字符串输出时的字体大小 130

10.2.10 fromCharCode方法：根据指定的 Unicode编码返回一个字符串 130

10.2.11 indexOf方法：返回指定字符（串）第一次在字符串中出现的位置 131

10.2.12 italics方法：在字符串两端加入斜体标签 132

10.2.13 lastIndexOf方法：返回指定字符（串）最后一次在字符串中出现的位置 133

10.2.14 link方法：在字符串上加入超级链接 133

10.2.15 localeCompare方法：比较两个字符串的大小 134

10.2.16 slice方法：从字符串中提取子串 135

10.2.17 small方法：在字符串两端加上小字体标记 136

10.2.18 split方法：将字符串分割并存储到数组中 136

10.2.19 strike方法：在字符串的两端加入下划线标记 137

10.2.20 sub方法：在字符串两端加入下标标签 138

10.2.21 substr方法：返回字符串中的一个子串 138

10.2.22 substring方法：从字符串中提取子串 139

10.2.23 sup方法：在字符串两端加入上标标签 140

10.2.24 toLowerCase方法：将字符串转化为小写格式 141

10.2.25 toUpperCase方法：将字符串转化为大写格式 142

10.2.26 valueOf方法：返回指定对象的原始值 142

10.2.27 replace方法：替换字符串中指定的内容 143

10.3 String对象的属性 144

10.3.1 length方法：返回字符串的长度 144

10.3.2 prototype属性：将新定义的属性或方法添加到 String对象中 144

10.3.3 constructor属性：指向创建当前对象的构造函数 145

第 11章 Math对象：提供数学运算所需的函数和常数 146

11.1 Math对象的属性 146

11.1.1 E属性：返回欧拉常数 e的值 146

11.1.2 LN2属性：2的自然对数的值 146

11.1.3 LN10属性：10的自然对数的值 147

11.1.4 LOG2E属性：基数为 2的对数 147

11.1.5 LOG10E属性：基数为 10的对数 148

11.1.6 PI属性：返回π的值 148

11.1.7 SQRT1_2、SQRT2属性：分别返回 0.5和 2的平方根 149

11.2 Math对象的方法 149

11.2.1 abs方法：计算指定参数的绝对值 149

11.2.2 acos方法：返回指定参数的反余弦值 150

11.2.3 asin方法：返回指定参数的反正弦值 150

11.2.4 atan方法：返回指定参数的反正切值 151

11.2.5 atan2：根据指定的坐标返回一个弧度值 152

11.2.6 ceil方法：返回大于或等于指定参数的最小整数 152

11.2.7 cos方法：计算指定参数的余弦值 153

11.2.8 exp方法：以 e为基数的指数函数 154

11.2.9 floor方法：返回小于或等于指定参数的最大整数 154

11.2.10 log方法：以 e为基数的自然对数 155

11.2.11 max方法：返回两个或多个参数中的最大值 156

11.2.12 min方法：返回两个或多个参数中的最小值 157

11.2.13 pow方法：幂运算 157

11.2.14 random方法：产生 0到 1之间的随机数 158

11.2.15 round方法：取整运算 159

11.2.16 sin方法：计算指定参数的正弦值 159

11.2.17 sqrt方法：开平方运算 160

11.2.18 tan方法：计算指定参数的正切值 160

11.3 使用 Math对象 161

11.3.1 掷骰子游戏 161

11.3.2 绘制数学函数 164

第 12章 数组与 Array对象：创建和操作数组 168

12.1 数组概述 168

12.1.1 数组索引 168

12.1.2 通过 Array对象创建数组 169

12.1.3 自定义数组构造函数创建数组 170

12.1.4 通过其他对象的方法获取创建数组 171

12.2 Array对象的属性 172

12.2.1 length属性：返回数组的长度 172

12.2.2 prototype属性：将新定义的属性或方法添加到 Array对象中 173

12.3 Array对象的方法 174

12.3.1 concat属性：连接其他数组到当前数组末尾 174

12.3.2 jion方法：将数组元素连接为字符串 175

12.3.3 pop方法：删除数组中最后一个元素 176

12.3.4 push方法：将指定的数据添加到数组中 176

12.3.5 reverse方法：反序排列数组中的元素 177

12.3.6 shift方法：删除数组中的第一个元素 178

12.3.7 slice方法：获取数组中的一部分数据 178

12.3.8 sort方法：对数组中的元素进行排序 179

12.3.9 splice方法：删除或替换数组中部分数据 180

12.3.10 unshift方法：在数组前面插入数据 181

12.3.11 toString方法：返回一个包含数组中全部数据的字符串 182

12.4 进一步讨论：二维数组的实现 183

第 13章 其他 JavaScript对象：RegExp、Number等对象 186

13.1 正则表达式与 RegExp对象 186

13.1.1 正则表达式概述 186

13.1.2 子匹配与反向引用 187

13.1.3 创建正则表达式 187

13.1.4 RegExp对象的属性 190

13.1.5 RegExp对象的方法 194

13.2 Object对象 197

13.2.1 Object对象的属性 197

13.2.2 Object对象的方法 197

13.3 Number对象 200

13.3.1 MAX_VALUE、MIN_VALUE属性：最大、最小值 201

13.3.2 NaN属性：返回一个非数字值 NaN 201

13.3.3 POSITIVE_INFINITY、NEGATIVE_INFINITY属性：正、负无穷大 202

13.4 错误处理与 Error对象 202

13.4.1 try-catch语句 202

13.4.2 error对象 206

第 14章 form表单：操作和使用Web表单 208

14.1 form对象概述 208

14.1.1 引用表单控件 208

14.1.2 元素数组 210

14.2 form对象的属性和方法 211

14.2.1 action属性：设置或获取将表单中的数据发送到页面的 URL 211

14.2.2 elements属性：获取表单中所有元素控件的集合 213

14.2.3 all属性：返回表单中所有 HTML标记的集合 214

14.2.4 disabled属性：读取或设置 form对象的状态 215

14.2.5 method属性：设置或读取表单向服务器发送数据的方法 216

14.2.6 length属性：返回 form表单中元素的个数 216

14.2.7 reset方法：清空表单中所填写的内容 217

14.2.8 submit方法：提交表单 218

14.3 form表单元素 218

14.3.1 表单按钮 218

14.3.2 文本框 219

14.3.3 单选按钮和复选框 220

14.3.4 列表框 221

14.3.5 文本域 225

14.3.6 上传控件 226

第 15章 document对象 227

15.1 document对象的方法 227

15.1.1 write方法：向 HTML文档中输入指定的内容 227

15.1.2 writeln方法：向 HTML文档中写入数据并换行 228

15.1.3 open方法：打开文档以收集 write或 writeln方法的输出 228

15.1.4 close方法：关闭输出并将数据显示到文档中 229

15.1.5 createElement方法：根据指定的标记创建一个 HTML元素 229

15.1.6 elementFormPoint方法：获得指定位置的 HTML元素 230

15.1.7 getElementById方法：获得指定 id的 HTML元素 230

15.1.8 getElementsByName方法：获得指定名称的 HTML元素 231

15.1.9 getElementsByTagName方法：获得 HTML元素中指定的标签名称 231

15.1.10 hasFocus方法：判断对象是否获得焦点 232

15.1.11 focus方法：使指定对象获得焦点 233

15.2 document对象的属性 234

15.2.1 alinkcolor属性：设置或获取被激活链接的颜色 234

15.2.2 bgColor属性：设置或获取文档的背景颜色 235

15.2.3 charset属性：设置解码字符集 235

15.2.4 cookie属性：设置或读取 cookie信息 236

15.2.5 fgcolor属性：设置或获取页面的前景颜色 236

15.2.6 linkColor属性：设置或获取文档内未经点击的链接颜色 237

15.2.7 protocol属性：设置或获取 URL的协议部分 238

15.2.8 readyState属性：获取对象的当前状态 238

15.2.9 title属性：设置或获取文档标题 239

15.2.10 URL属性：设置或取得文档的 URL 240

15.2.11 vlinkColor属性：设置或获取未经点击的链接颜色 240

15.2.12 fileSize属性：获取文件大小 240

15.2.13 fileCreatedDate属性：获取文件的创建日期 241

15.3 document对象的集合 241

15.3.1 images集合：网页中的图像 241

15.3.2 forms集合：页面中的<form>标签 242

15.3.3 all集合：网页中所有 HTML元素 243

15.3.4 links集合：网页中所有的链接 244

15.3.5 anchors集合：获取所有带有 name和 id属性的 a对象的集合，此集合中的对象以HTML

源顺序排列 245

15.4 body对象 246

15.4.1 background属性：设置背景图片 246

15.4.2 bgProperties属性：设置图片是否能够滚动 246

15.4.3 bottomMargin、leftMargin、rightMargin、topMargin属性：设置或获取边距 247

15.4.4 link属性：设置或获取未经点击的链接颜色 248

15.4.5 noWrap属性：设置或获取是否自动换行 248

15.4.6 scroll属性：设置滚动条是否开启 249

15.4.7 scrollLeft属性：设置或获取横向滚动的距离 249

15.4.8 scrollTop属性：表示纵向滚动的距离 250

15.5 selection对象 251

15.5.1 selection对象的属性 251

15.5.2 selection对象的方法 252

第 16章 Window对象：访问和控制浏览器窗口 254

16.1 Window对象的方法 254

16.1.1 alert方法：弹出一个警告对话框 254

16.1.2 confirm：弹出一个选择对话框 254

16.1.3 prompt方法：弹出一个供用户输入信息的对话框 255

16.1.4 blur方法：使Window失去焦点 256

16.1.5 setInterval方法：指定每隔多长时间执行指定代码一次 256

16.1.6 clearInterval方法：清除 setInterval方法产生的作用效果 258

16.1.7 setTimeout方法：指定多长时间之后执行指定的代码 258

16.1.8 clearTimeout方法：清除 setTimeout方法的作用效果 259

16.1.9 close方法：关闭Window窗口 259

16.1.10 focus方法：使窗口获得焦点 260

16.1.11 moveBy方法：通过指定偏移量来移动窗口 260

16.1.12 moveTo方法：移动窗口到指定的坐标 261

16.1.13 open方法：打开一个新的窗口 261

16.1.14 navigate方法：在当前窗口中加载指定页面 263

16.1.15 resizeBy方法：通过指定窗口右下角坐标的偏移量来缩放窗口 263

16.1.16 resizeTo方法：通过指定窗口右下角的新坐标来改变窗口的大小 264

16.1.17 scrollTo方法：滚动窗口中的内容到新的位置 265

16.1.18 scrollBy方法：按给定的偏移量来滚动窗口中的内容 265

16.1.19 showModalDialog方法：打开一个模式对话框以显示指定内容 266

16.1.20 showModalessDialog方法：打开一个非模式对话框并显示指定内容 267

16.2 Window对象的属性 268

16.2.1 closed属性：判断引用的窗口是否已经关闭 268

16.2.2 defaultStatus属性：设置或返回窗口的缺省状态信息 269

16.2.3 dialogArguments属性：获取传递给模式对话框的数据 270

16.2.4 dialogHeight、dialogWidth属性：设置或返回模式对话框的高度、宽度 270

16.2.5 dialogLeft、dialogTop属性：设置或返回对话框的位置 270

16.2.6 opener属性：设置返回对打开当前窗口的副窗口的引用 270

16.3 Window对象的子对象 271

16.3.1 screen对象：获取计算机屏幕的一些属性 272

16.3.2 location对象：设置或获取当前 URL的信息 273

16.3.3 history对象：访问最近所访问的 URL的列表 278

第 17章 其他 DOM对象：Event对象与 Table对象 281

17.1 事件及事件响应机制 281

17.2 Event对象 282

17.2.1 altKey、altLeft属性：判断（左）ALT键是否被按下 282

17.2.2 ctrlKey、ctrlLeft属性：判断（左）Ctrl键是否被按下 283

17.2.3 shiftKey、shiftLeft属性：判断（左）shift键是否被按下 284

17.2.4 button属性：判断事件发生时鼠标按键情况 284

17.2.5 clientX、clientY属性：设置或获取事件位置的坐标 285

17.2.6 offsetX、offsetY属性：获取鼠标距事件源的 x、y距离 286

17.2.7 fromElement、toElement和 srcElement属性：捕捉与事件相关的对象 287

17.2.8 keyCode属性：获取事件相关字符的 Unicode码 288

17.2.9 returnValue属性：捕捉与事件相关的对象 289

17.2.10 repeat属性：判断某一键是否被重复按下 290

17.3 Table对象 290

17.3.1 align属性：设置表格的对齐方式 291

17.3.2 background、backcolor属性：设置表格的背景图片、背景颜色 292

17.3.3 border属性：设置表格边框的宽度 292

17.3.4 borderColor、borderColorDark和 borderColorLight属性：设置或获取表格边框

颜色 293

17.3.5 Caption属性：返回对表格中 Caption对象的引用 293

17.3.6 cellPadding、cellSpacing属性：设置表格中的间距 293

17.3.7 cols属性：返回表格的列数 294

17.3.8 cells属性：所有单元格的集合 294

17.3.9 rows属性：表格中所有行的集合 295

17.3.10 tfoot、thead属性：返回对表格 tfoot、thead对象的引用 296

17.3.11 createCaption方法：创建 Caption对象 296

17.3.12 createTFoot、createTHead方法：创建表头表尾 297

17.3.13 deleteCaption方法：删除表格的标题 297

17.3.14 deleteTFoot、deleteTHead方法：删除表格的表头和表尾 297

17.3.15 deleteRow方法：删除表格中的一行 298

17.3.16 insertRow方法：向表格中插入一行 299

17.3.17 moveRow方法：移动一行至新的位置 300

下篇 ActiveX插件技术

第 18章 ActiveX技术：定义及 ActiveX组件实例 305

18.1 ActiveX技术概述 305

18.1.1 创建 ActiveX对象 305

18.1.2 操作 ActiveX对象 306

18.2 几个有用的 ActiveX组件介绍 308

18.2.1 DTpicker组件：日期选择控件 308

18.2.2 Microsoft Agent组件：脚本动画控件 309

第 19章 文件访问对象：提供访问文件系统的各种方法 312

19.1 Drive对象与 Drives集合 312

19.1.1 AvailableSpace属性：获取驱动器上的可用空间的大小 312

19.1.2 DriveLetter属性：返回代表该驱动器的字母符号 313

19.1.3 DriveType属性：返回所指定的驱动器的类型 313

19.1.4 FileSystem属性：返回指定驱动器所使用的文件系统类型 314

19.1.5 FreeSpace属性：返回指定驱动器上的剩余空间的大小 315

19.1.6 IsReady属性：判断指定的驱动器是否就绪 315

19.1.7 Path属性：返回驱动器的路径 316

19.1.8 RootFolder属性：返回指定驱动器的根目录 316

19.1.9 TotalSize属性：返回指定驱动器上的全部空间的大小 317

19.1.10 VolumeName属性：设置或返回指定驱动器的卷名 317

19.2 File对象 318

19.2.1 Attributes属性：设置或返回文件的属性 318

19.2.2 DateCreated属性：获取文件的创建时间 319

19.2.3 DateLastAccessed属性：返回文件最后被访问的时间 319

19.2.4 DateLastModified属性：返回文件最后被修改的时间 319

19.2.5 Drive属性：返回指定文件所在的驱动器 321

19.2.6 Name属性：返回所指定文件的文件名 321

19.2.7 ParentFolder属性：返回文件所在的目录 321

19.2.8 Path属性：返回指定文件的路径 321

19.2.9 Size属性：返回文件的大小 322

19.2.10 Type属性：返回指定文件的类型信息 322

19.2.11 Copy方法：将文件复制到指定位置 323

19.2.12 Delete方法：删除指定的文件 324

19.2.13 Move方法：将文件移动到指定位置 325

19.2.14 OpenAsTextStream方法：打开文件用于读、写或追加操作 326

19.3 Folder对象与 Folders集合 327

19.3.1 Attributes属性：设置或返回文件夹的属性 327

19.3.2 DateCreated属性：获取文件夹的创建时间 327

19.3.3 DateLastAccessed属性：返回文件夹最后被访问的时间 328

19.3.4 DateLastModified属性：返回文件夹最后被修改的时间 328

19.3.5 Drive属性：返回指定文件夹所在的驱动器 329

19.3.6 Name属性：返回所指定文件夹的文件夹名 329

19.3.7 ParentFolder属性：返回文件夹所在的目录 330

19.3.8 Path属性：返回指定文件夹的路径 330

19.3.9 Size属性：返回文件夹的大小 330

19.3.10 SubFolders属性：包含了指定文件夹下的所有子文件夹 330

19.3.11 Copy方法：将文件夹复制到指定位置 331

19.3.12 Delete方法：删除所指定的文件夹 331

19.3.13 Move方法：将文件夹移动到指定位置 331

19.3.14 CreateTextFile方法：创建文件夹并返回一个 TextStream 对象 332

19.4 FileSystemObject对象 332

19.4.1 BuildPath方法：根据指定的参数生成新的路径 332

19.4.2 CopyFile方法：实现文件复制功能 333

19.4.3 CopyFolder方法：实现文件夹的复制功能 333

19.4.4 CreateFolder方法：创建文件夹 334

19.4.5 CreateTextFile方法：创建文件并返回一个 TextStream对象 334

19.4.6 DeleteFile方法：删除指定文件 335

19.4.7 DeleteFolder方法：删除指定的文件夹和其中的内容 336

19.4.8 DriveExists方法：判断指定的驱动器是否存在 336

19.4.9 FileExists方法：判断指定的文件是否存在 337

19.4.10 FolderExists方法：判断指定的文件夹是否存在 337

19.4.11 GetAbsolutePathName方法：返回意义完整的路径 339

19.4.12 GetBaseName方法：返回文件或文件夹的基本名 339

19.4.13 GetDrive方法：从指定的路径中得到一个 Drive对象 340

19.4.14 GetDriveName方法：从提供的路径中提取表示驱动器的字符串 340

19.4.15 GetExtensionName方法：从指定路径中提取文件的扩展名（后缀） 340

19.4.16 GetFile方法：返回一个指向指定文件的 File对象 341

19.4.17 GetFileName方法：返回指定路径中文件或文件夹的名称 341

19.4.18 GetFolder方法：返回一个指向指定文件夹的 Folder对象 341

19.4.19 GetParentFolderName方法：返回给定路径最后一部分的父目录 341

19.4.20 GetSpecialFolder方法：根据要求返回一个特殊文件夹 342

19.4.21 GetTempName方法：随机生成文件或文件夹用于操作 343

19.4.22 MoveFile方法：将一个或一批文件移动到目标位置 343

19.4.23 MoveFolder方法：移动一个或一批文件夹到目标位置 344

19.4.24 OpenTextFile方法：打开指定文件用于读写操作 344

19.5 TextStream对象 345

19.5.1 AtEndOfLine属性：判断指针是否到达文件中某一行的末尾 345

19.5.2 AtEndOfStream属性：判断指针是否到达文件末尾 346

19.5.3 Column属性：返回文件指针当前位置的列号 347

19.5.4 Line属性：返回文件指针所在的行号 347

19.5.5 Close方法：关闭打开的 TextStream对象 348

19.5.6 Read方法：从指定文件中读取指定长度的内容 348

19.5.7 ReadAll方法：读取指定文件中的全部内容 349

19.5.8 ReadLine方法：从指定文件中读取一行字符 349

19.5.9 Skip方法：跳过文件中指定数目的字符 350

19.5.10 SkipLine方法：跳过文件中的一行 350

19.5.11 Write方法：向文件中写入指定字符串 351

19.5.12 WriteLine方法：向文件中写入一行字符 351

19.5.13 WriteBlankLines方法：向文件中写入指定数量的空行 351

第 20章 数据库访问：提供访问和操作数据库的各种方法 353

20.1 结构化查询语言及 ADO概述 353

20.1.1 结构化查询语言 SQL 353

20.1.2 ADO对象简介 355

20.2 Connection对象 355

20.2.1 Open方法：打开与数据源的连接 358

20.2.2 Execute方法：执行指定的查询、SQL语句以及存储过程等 358

20.2.3 Close方法：关闭 Connection对象 359

20.2.4 Cancel方法：取消执行挂起的异步 Execute或者 Open方法的调用 359

20.2.5 BeginTrans方法：开始一个事务 359

20.2.6 CommitTrans方法：保存所做工作并结束事务 359

20.2.7 RollBackTrans方法：取消当前事务中的任何修改并结束事务 360

20.2.8 Attributes属性：设置或读取 Connection对象的特性 361

20.2.9 CommandTimeout属性：设置命令执行的时间 361

20.2.10 ConnectionString属性：用于指定连接数据源的信息 361

20.2.11 ConnectionTimeout属性：设置连接等待时间 362

20.2.12 CursorLocation属性：设置或者返回服务游标位置 362

20.2.13 DefaultDatabase属性：设置 Connection对象的默认数据库 363

20.2.14 Mode属性：设置或者返回在 Connection对象中修改数据的权限 363

20.2.15 Provider属性：设置或返回 Connection对象提供者的名称 363

20.2.16 State属性：获取 Connection对象的当前状态 364

20.2.17 Version属性：获取 ADO的版本号 365

20.2.18 Connection对象的 Errors集合 365

20.3 Command对象 367

20.3.1 ActiveConnection属性：指定 Command对象所属的 Connection对象 367

20.3.2 CommandText属性：指定要执行的命令文本 367

20.3.3 CommandTimeOut属性：设置命令执行的时间 368

20.3.4 CommandType属性：指定 Command对象命令的类型 368

20.3.5 Prepared属性：指定是否保存 CommandText的编译版本 369

20.3.6 CreateParameter方法：根据提供的属性创建新的 Parameter对象 369

20.3.7 Execute方法：执行 Command对象的命令 370

20.3.8 Cancel方法：取消执行挂起的异步 Execute方法 370

20.3.9 State属性：返回 Command对象的状态 371

20.3.10 带参数查询 371

20.4 RecordSet对象 373

20.4.1 记录集与游标 373

20.4.2 记录集的锁定 374

20.4.3 ActiveConnection属性：指定 RecordSet对象所属的 Connection对象 374

20.4.4 BOF、EOF属性：判断游标是否处于记录集的开头或者末尾 374

20.4.5 BookMark属性：返回记录集的书签或者根据书签定位记录 376

20.4.6 CacheSize属性：设置或返回内存中缓存记录的数目 377

20.4.7 CursorLocation属性：指定游标服务的类型 377

20.4.8 CursorType属性：指定所使用游标的种类 377

20.4.9 EditMode属性：返回当前记录的编辑状态 378

20.4.10 Filter属性：根据指定的条件筛选记录集中的记录 378

20.4.11 Index属性：设置或返回 RecordSet对象当前有效的索引 380

20.4.12 LockType属性：指定记录的锁定类型 380

20.4.13 MaxRecords 属性：指定打开 RecordSet 对象时所允许的最大记录条数

 381

20.4.14 RecordCount属性：返回记录集中记录的条数 381

20.4.15 Sort属性：根据指定的字段和顺序对字段集进行排序 382

20.4.16 Source属性：设置或返回 Recordset对象中数据的来源 383

20.4.17 State属性：判断 RecordSet对象的连接状态 384

20.4.18 Status属性：显示记录集中当前记录的状态 384

20.4.19 PageSize属性：设置 RecordSet对象一页所含有的记录数 385

20.4.20 PageCount属性：返回 RecordSet对象中所具有的数据页数 385

20.4.21 AbsolutePage属性：设置或返回当前的页码 385

20.4.22 AbsolutePosition属性：设置或返回当前记录的位置 387

20.4.23 Open方法：打开游标与数据源建立连接 389

20.4.24 Move方法：移动游标至某一位置 389

20.4.25 MoveFirst、MoveLast、MoveNext 和 MovePrevious 方法：移动游标位置

 390

20.4.26 AddNew方法：添加新记录 392

20.4.27 Cancel方法：取消执行挂起的异步 Execute方法和 Open方法 393

20.4.28 UpdateBatch方法：保存对 RecordSet对象中数据的批量修改 393

20.4.29 CancelBatch方法：取消对 RecordSet对象中数据的批量更新 394

20.4.30 CancelUpdate方法：放弃对数据的更新 394

20.4.31 Clone方法：创建 RecordSet对象的复制版本 394

20.4.32 NextRecordset 方法：执行命令序列中的下一条命令并返回一个记录集

 395

20.4.33 Requery方法：更新 RecordSet对象中的数据 396

20.4.34 Resync方法：从数据库中刷新 RecordSet对象中的数据 396

20.4.35 Seek方法：在 RecordSet对象中快速定位记录 398

20.4.36 Supports方法：判断 RecordSet对象是否支持某种功能 398

20.4.37 GetRows方法：将 RecordSet指定的记录写入一个数组中 399

20.4.38 Close方法：关闭当前 RecordSet对象 400

20.4.39 Delete 方法：删除当前记录或记录组 400

20.4.40 Fields集合及 Field对象 401

附录 A ASCII字符编码表 403

附录 B 正则表达式元字符及其说明 405

附录 C 常用事件句柄 407

附录 D JavaScript运行时错误 410

附录 E JavaScript中的语法错误表 413

附录 F ADO错误信息 415

附录 G 扩展的 ADO错误信息及说明 417

样章：

第 12章

数组与 Array对象：创建和操作数组

如第三章所介绍，在程序中数据是存储在变量中的，但是，如果数据量很大，比如几百

个学生的成绩，此时再逐个定义变量来存储这些数据就显得异常繁琐，如果通过数组来存储

这些数据就会使这一过程大大简化。在编程语言中，数组是专门用于存储有序数列的工具，

也是最基本、最常用的数据结构之一。在 JavaScript 中，Array 对象专门负责数组的定义和
管理，本章将详细地介绍数组的作用和 Array对象的各个属性和方法。

12.1 数组概述
可以把数组看作一行表格，该表格的每一个单元格中都可以存储一个数据，而且各个单

元格中存储的数据可以不同。这些单元格被称为数组元素，每一个数组元素都有一个索引号，

通过索引号可以方便地引用数组元素。

12.1.1 数组索引

数组索引是数组元素的标记，在 JavaScript中，数组索引从 0开始，最大索引为数组元
素的个数减 1。数组索引与数组元素的对应关系如
图 12.1所示。
图中 a为数组名称，该数组的长度为 7，最大

索引为 6。因此如果定义了一个长度为 n的数组，
那么该数组的最大索引为 n-1。在 JavaScript中，如
果使用数组时指定的索引超过了该数组的最大索引，系统并不会提示错误，而是自动增加数

组的长度，以适应存储要求。
通过索引引用数组元素的一般格式为：

array[index]

参数说明如下。
□ array：必选项，数组名称。
□ index：必选项，数组索引。
在引用数组元素时，一般配合使用数组索引和 for语句以提高效率，下面的代码演示了

如何通过数组索引来访问数组。
<script>
 //定义数组
 var arr=new Array(3);
 //给数组元素赋值
 arr[0]="first";
 arr[1]="second";
 //利用for语句赋值，超出索引范围
 for(var i=2;i<5;i++)
 {
 arr[i]=i;

图 12.1 数组元素与数组索引

 }
 //利用for语句输出所有数组元素
 for(var i in arr)
 {
 document.write(arr[i]);
 document.write("
");
 }
</script>

这段代码中，首先定义了一个长度为 3 的数组，然后给数组的前两个元素逐个赋
了值，之后又使用 for语句给其他元素赋了值，并且指定的索引超出了定义的范围，最
后通过 for-in 语句输出了数组中的全部数据。运行这段代码，可以看到图 12.2 所示的
页面效果。

图 12.2 数组索引

在 JavaScript中可以通过多种方法来创建数组，下面介绍常用的几种。

12.1.2 通过 Array对象创建数组

这是最常用的一种创建方法，这种创建方法有以下两种格式。

var arrname=new Array([length])
var arrname=new Array([arg1[,arg2[,…[,argn]]]])

参数说明如下。
□ arrname：必选项，所定义的数组的名称。
□ length：可选项，整数值，用于指定所定义的数组的长度。
□ arg1、arg2、…、argn：可选项，任意类型的数据，初始化数组的数据。
如果定义数组时没有指定任何参数，则创建一个空数组，该数组的内容可以在以后的操

作中根据需要添加；如果定义数组时，只指定了一个参数且该参数为正整数，则会返回一个

以该整数长度的数组；如果同时指定了多个参数，则会返回一个存储有指定参数的数组，该

数组的长度由参数的个数确定。
下面的代码演示了利用 Array对象创建数组时的这三种不同的情况。

<script>
 var arr1=new Array();
 var arr2=new Array(4);
 var arr3=new Array(1,2,3,"a","b");
 arr1[0]="add 1";
 arr1[1]="add 2";
 for(var i=0;i<4;i++)
 {
 arr2[i]=i;
 }
 writearr("arr1",arr1);
 writearr("arr2",arr2);
 writearr("arr3",arr3);
 //自定义函数，输出数组中所有元素
 function writearr(strinfo,arr)
 {
 document.write(strinfo+":");
 for(var i=0;i<arr.length;i++)
 {

 document.write(arr[i]);
 document.write(" ");
 }
 document.write("
");
 }
</script>

运行这段代码可以看到图 12.3所示的页面效果。

图 12.3 代码执行效果

12.1.3 自定义数组构造函数创建数组

这种方法需要先定义一个构造函数，在构造函数内实现数组的创建和初始化，这时要借

助于 this指针，具体的实现过程可以参考下面的实例。

<script>
 //自定义构造函数
 function myArray(n,initvalue)
 {
 for(var i=0;i<n;i++)
 this[i]=initvalue;
 this.length=n;
 }
 var strhead="<input type='text' size='4' name='score";
 var strend="'>";
 var num=20
 //利用构造函数创建数组
 var arr=new myArray(num,strhead);
 document.write("<form>");
 //修改数组元素并输出
 for(var i=0;i<num;i++)
 {
 if (i%5==0)
 document.write("
");
 arr[i]+=i+strend;
 document.write(arr[i]);
 }
 document.write("
<input type='button' value='提交'>");
 document.write("</form>");
</script>

这段代码中自定义了一个构造函数，该构造函数含有两个参数，第一参数用于指定数组

的长度，第二个参数用于指定数组元素的初始值。运行这段代码可以看到图 12.4 所示的页
面效果。

图 12.4 自定义数组构造函数演示

可以看到：通过自定义构造函数来创建数组具有更大的灵活性，可以方便简洁地实现一

些特殊功能。

12.1.4 通过其他对象的方法获取创建数组

一些对象的某些方法的返回值就是一个数组，比如 String 对象的 split 方法，该方法就
可以将指定的字符串划分为若干部分，存储到数组中并返回。通过这种方式得到的数组可以

和前面两种方法创建的数组一样使用。下面的代码演示了利用 String 对象的 split 方法创建
数组的过程。

<script>
 var str="this is a test";
 //获取数组
 var arr=str.split(" ");
 //操作数组
 for(var i=0;i<arr.length;i++)
 {
 arr[i]+="_";
 }
 arr[arr.length]="!"
 //输出数组
 for(var i in arr)
 document.write(arr[i]);
</script>

这段代码通过调用 String 对象的 split 方法获取了一个数组 arr，然后利用 for 循环对数
组中所有元素的值进行了修改，之后又在数组的末尾新添加了一个元素并赋值为“！”，最后

输出了数组中的全部数据。运行这段代码，执行效果如图 12.5所示。

图 12.5 通过 split方法创建数组

12.2 Array对象的属性
Array对象的属性有 3个：length属性、constructor属性和 prototype属性。本节将简单

介绍一下 length属性和 prototype属性的应用。对于 constructor属性，可以参考前面介绍的
Date对象的 constructor属性。

12.2.1 length属性：返回数组的长度

【功能说明】所谓数组的长度是指数组中数组元素的个数，而且其数值会随着数组元素

的增减而自动改变，因此，利用该属性可以方便地实现对数组的遍历。
【基本语法】array.length
其中，array为数组名称。
【实例演示】

<script>
 var arr=new Array(1,2,3,4,5,6,7,8);
 with (document)
 {
 write("数组长度:"+arr.length);
 write("
新增一个元素")
 arr[arr.length]=arr.length+1;
 write("
数组长度:"+arr.length);
 write("
奇数位元素：");
 for(var i=0;i<arr.length;i+=2)
 {
 write(arr[i]+",");
 }
 write("
偶数位元素：");
 for(var i=1;i<arr.length;i+=2)
 {
 write(arr[i]+",");
 }
 }
</script>

运行这段代码可以看到图 12.6所示的页面效果。
从本例中可以看到，数组的 length会随数组中元素个数的增减而自动变化，利用 length

属性和 for语句可以方便地遍历数组中的所有元素。

图 12.6 length属性演示

12.2.2 prototype 属性：将新定义的属性或方法添加到 Array 对象
中

【功能说明】该属性是所有 JavaScript对象所共有的属性，和 Date对象的 prototype属
性一样，其作用为将新定义的属性或方法添加到 Array对象中，然后，该对象的实例就可以
调用该属性或方法。
【基本语法】Array.prototype.methodName=functionName
参数说明如下。
□ methodName：必选项，新增方法的名称。
□ functionName：必选项，要添加到对象中的函数名称。
【实例演示】

<script>
 //添加一个属性，用于统计删除的元素个数
 Array.prototype.removed=0;
 //添加一个方法，用于删除指定索引的元素
 Array.prototype.removeAt=function(index)
 {
 if(isNaN(index)||index<0)
 {return false;}
 if(index>=this.length)
 {index=this.length-1}
 for(var i=index;i<this.length;i++)
 {
 this[i]=this[i+1];

 }
 this.length-=1
 this.removed++;
 }
 //添加一个方法，输出数组中的全部数据
 Array.prototype.outPut=function(sp)
 {
 for(var i=0;i<this.length;i++)
 {
 document.write(this[i]);
 document.write(sp);
 }
 document.write("
");
 }
 //定义数组
 var arr=new Array(1,2,3,4,5,6,7,8,9);
 //测试添加的方法和属性
 arr.outPut(" ");
 document.write("删除一个数据
");
 arr.removeAt(2);
 arr.outPut(" ");
 arr.removeAt(4);
 document.write("删除一个数据
");
 arr.outPut(" ")
 document.write("一共删除了"+arr.removed+"个数据");
</script>

这段代码利用 prototype 属性分别向 Array 对象中添加了两个方法和一个属性，分别实
现了删除指定索引处的元素、输出数组中的所有元素和统计删除元素个数的功能。运行这段

代码可以看到图 12.7所示的页面效果。

图 12.7 prototype属性演示

12.3 Array对象的方法
Array对象常用的方法有 13个，依次介绍如下。

12.3.1 concat属性：连接其他数组到当前数组末尾

【功能说明】该方法的作用是把当前数组和指定的数组相连接，然后返回一个新的数组，

该数组中含有前面两个数组的全部元素，其长度为两个数组的长度之和。
【基本语法】array1.concat(array2)
参数说明如下。
□ array1：必选项，数组名称。
□ array2：必选项，数组名称，该数组中的元素将被添加到数组 array1中。
【实例演示】

<script>
 var array1=new Array(1,2,3,4,5,6,7);

 var array2=new Array(8,9,10);
 var array=array1.concat(array2);
 //自定义函数，输出数组中所有数据
 function writeArr(arrname,sp)
 {
 for(var i=0;i<arrname.length;i++)
 {
 document.write(arrname[i]);
 document.write(sp);
 }
 document.write("
");
 }
 document.write("数组1：");
 writeArr(array1,",");
 document.write("数组2：");
 writeArr(array2,",");
 document.write("数组3：");
 writeArr(array,",");
 </script>

这段代码定义了两个数组 array1 和 array2，然后把这两个数组连接并将值赋给数组
array。运行这段代码可以看到图 12.8所示的页面效果。

图 12.8 concat方法演示

12.3.2 jion方法：将数组元素连接为字符串

【功能说明】该方法与 String 对象的 split 方法的作用相反，该方法的作用是将数组中
所有元素连接为一个字符串，如果数组中的元素不是字符串，则该元素将首先被转化为字符

串，各个元素之间可以以指定的分隔符进行连接。
【基本语法】array.jion(separator)
参数说明如下。
□ array：必选项，数组的名称。
□ separator：必选项，连接各个元素之间的分隔符。
【实例演示】
下面的代码对比了 split方法和 jion方法。

<script>
 var str1="this ia a test";
 var arr=str1.split(" ");
 var str2=arr.join(",");
 with(document){
 write(str1);
 write("
分割为数组，数组长度"+arr.length+",重新连接如下：
");
 write(str2);
 }
</script>

这段代码首先使用 split 方法以“ ”（空格）为分隔符将字符串分割存储到数组中，然
后调用 join方法以“，”（逗号）为分隔符，将数组中的各个元素重新连接为一个新字符串。
运行这段代码可以看到图 12.9所示的页面效果。

图 12.9 join方法演示

12.3.3 pop方法：删除数组中最后一个元素

【功能说明】该方法将数组中的最后一个元素删除并返回该元素，调用该方法后，数组

的长度将减小 1。如果数组为空，则该方法的返回值为 undefined。
【基本语法】array.pop()
【实例演示】

<script>
 var arr=new Array(1,2,3,4,5,6,7,8,9);
 with (document)
 {
 write(arr.join(","));
 write("
删除元素"+arr.pop()+"
");
 write("删除元素"+arr.pop()+"
");
 write(arr.join(","));
 }
</script>

运行这段代码，执行结果如图 12.10所示。

图 12.10 pop方法演示

12.3.4 push方法：将指定的数据添加到数组中

【功能说明】该方法可以将所指定的一个或多个数据添加到数组中，该方法的返回值为

添加新数据后数组的长度。
【基本语法】array.push([data1[,data2[,…[,datan]]]])
参数说明如下。
□ array：必选项，数组名称。
□ data1、data2、datan：可选参数，将被添加到数组中的数据。
如果 data1到 datan中的某一参数为数组，则该数组中的所有元素将被添加到数组中。
【实例演示】
下面的代码演示了如何利用 push方法向数组中添加新数据。

<script>
 var arr=new Array();
 document.write("向数组中写入数据：");
 //单个数据写入数组
 for (var i=1;i<=4;i++)

 {
 var data=arr.push(Math.ceil(Math.random()*10));
 document.write(data);
 document.write("个,");
 }
 document.write("
");
 //批量写入数组
 var data=arr.push("a",3.14,"hello");
 document.write("批量写入，数组长度已为"+data+"
");
 var newarr=new Array(1,2,3,4,5);
 document.write("向数组中写入另一个数组
");
 //写入新数组
 arr.push(newarr);
 document.write("全部数据如下:
");
 document.write(arr.join(","));
</script>

这段代码分别使用 push 方法向数组中逐个和批量添加了数据，运行这段代码，执行结
果如图 12.11所示。

图 12.11 push方法演示

12.3.5 reverse方法：反序排列数组中的元素

【功能说明】该方法可以将数组中的元素反序排列，数组中所包含的内容和数组的长度

不会改变。
【基本语法】array.reverse()
其中，array为数组的名称。
【实例演示】

<script>
 var arr=new Array(1,2,3,4,5,6,7,8,9);
 with (document)
 {
 write("数组为:");
 write(arr.join(","));
 arr.reverse();
 write("
反序后:")
 write(arr.join(","));
 }
</script>

运行这段代码，执行结果如图 12.12所示。

图 12.12 reverse方法演示

12.3.6 shift方法：删除数组中的第一个元素

【功能说明】该方法同 pop方法类似，不同的是该方法删除的是数组中的第一个元素，
其返回值为该元素的值。
【基本语法】array.shift()
其中，array为数组的名称，下面的代码演示了 shift方法的用法和作用。
【实例演示】

<script>
 var arr=new Array(1,2,3,4,5,6,7,8,9);
 with (document)
 {
 write(arr.join(","));
 write("
删除元素"+arr.shift()+"
");
 write("删除元素"+arr.shift()+"
");
 write(arr.join(","));
 }
</script>

运行这段代码，执行结果如图 12.13所示。

图 12.13 shift方法演示

12.3.7 slice方法：获取数组中的一部分数据

【功能说明】该方法从数组中提取一部分数据，并将这部分数据作为一个数组返回。
【基本语法】array.slice(start[,end])
参数说明如下。
□ array：必选项，数组名称。
□ start：必选项，获取数据的起始索引位置，从 0开始。
□ end：可选项，获取数据的结束位置，从 0开始。
该方法返回的数据中不包括 end 索引所对应的数据；如果 start（end）的值为负值，则

其值将被自动替换为 start（end）+length（length为数组长度）；如果没有指定 end值，则返
回从 start开始到数组末尾的所有元素。
【实例演示】

<script>
 var arr=new Array(1,2,3,4,5,6,7,8,9,10);
 writeArr("原始数组arr",arr);
 writeArr("arr.slice(2,5)提取片断",arr.slice(2,5));
 writeArr("arr.slice(-8,-1)提取片断",arr.slice(-8,-1));
 writeArr("arr.slice(1)提取片断",arr.slice(1));
 //自定义函数输出提示信息和数组元素
 function writeArr(str,array)
 {
 document.write(str+":");
 document.write(array.join(","));
 document.write("
");
 }
</script>

运行这段代码可以看到图 12.14所示的页面。

图 12.14 slice方法演示

12.3.8 sort方法：对数组中的元素进行排序

【功能说明】该方法对数组中的所有元素按 Unicode编码进行排序，并返回经过排序后
的数组。sort方法默认按升序进行排列，但也可以通过指定对比函数来实现特殊的排序要求，
对比函数的格式如下：

comparefunction(arg1,arg2)

其中，comparefunction 为排序函数的名称，该函数必须包含两个参数 arg1 和 arg2，分
别代表了两个将要进行对比的字符。该函数的返回值决定了如何对 arg1和 arg2进行排序。
□ 返回值为负，则 arg2将排在 arg1的后面。
□ 返回值为 0，arg1、arg2视为相等。
□ 返回值为正，则 arg2将排在 arg1的前面。
【基本语法】array.sort([cmpfun(arg1,arg2)])
参数说明如下。
□ array：必选项，数组名称。
□ cmpfun：可选项，比较函数。
□ arg1，arg2：可选项，比较函数的两个参数。
【实例演示】
下面的代码演示了如何使用 sort方法对数组中的数据进行排序。

<script>
 var arr=new Array(2,5,3,20,1,"b","x","B","X");
 writeArr("排序前",arr);
 writeArr("升序排列",arr.sort());
 writeArr("降序排列,字母不分大小写",arr.sort(desc));
 writeArr("严格降序排列",arr.sort(desc1));
 //自定义函数输出提示信息和数组元素
 function writeArr(str,array)
 {
 document.write(str+":");
 document.write(array.join(","));
 document.write("
");
 }
 //按降序排列,字母不区分大小写
 function desc(a,b)
 {
 var a=new String(a);
 var b=new String(b);
 //如果a大于b，则返回－1，所以a排在前b排在后
 return -1*a.localeCompare(b) ;
 }
 //严格降序
 function desc1(a,b)
 {
 var stra=new String(a);
 var strb=new String(b);
 var ai=stra.charCodeAt(0);
 var bi=strb.charCodeAt(0);
 if(ai>bi)
 return -1;
 else

 return 1;
 }
</script>

这段代码中定义了两个对比函数，其中 desc进行降序排列，但字母不区分大小写；desc1
进行严格降序排列。运行这段代码，执行结果如图 12.15所示。

图 12.15 sort方法演示

12.3.9 splice方法：删除或替换数组中部分数据

【功能说明】该方法可以通过指定起始索引和数据个数的方式，删除或替换数组中的部

分数据。该方法的返回值为被删除或替换掉的数据。
【基本语法】array.splice(start,count[,data1[,data2,[,…[,datacount]]]])
参数说明如下。
□ array：必选项，数组名称。
□ start：必选项，整数，起始索引。
□ count：必选项，整数，要删除或替换的数组的个数。
□ data：可选项，用于替换指定数据的新数据。
如果没有指定 data参数，则该指定的数据将被删除；如果指定了 data参数，则数组中

的数据将被替换。
【实例演示】

<script>
 var arr=new Array(0,1,2,3,4,5,6,7,8,9,10);
 var rewith=new Array("a","b","c");
 var tmp1=arr.splice(2,4,rewith);
 with(document)
 {
 writeArr("替换了4个数据",tmp1);
 writeArr("替换为：",rewith);
 writeArr("替换后",arr);
 var tmp2=arr.splice(5,2);
 writeArr("删除2个数据",tmp2);
 writeArr("替换后",arr); }
 //自定义函数输出提示信息和数组元素
 function writeArr(str,array)
 {
 document.write(str+":");
 document.write(array.join(","));
 document.write("
");
 }
</script>

这段代码分别演示了如何使用 splice方法替换和删除数组中指定数目的数据。运行这段
代码，执行结果如图 12.16所示。

图 12.16 splice方法演示

12.3.10 unshift方法：在数组前面插入数据

【功能说明】该方法与 shift 方法的作用相反，该方法在数组的开始插入一个或多个数
据，返回值为增加了新插入数据之后的数组长度。
【基本语法】array.unshift([data1[,data2[,…[,datan]]]])
参数说明如下。
□ array：必选项，数组名称。
□ data1到 datan：可选项，要插入到数组开始的数据。
【实例演示】

<script>
 var arr=new Array();
 //单个数据写入数组
 for (var i=1;i<=4;i++)
 {
 arr.unshift(i);
 }
 document.write("
");
 //批量写入数组
 arr.unshift("a",3.14,"hello");
 var newarr=new Array(1,2,3,4,5);
 //写入新数组
 arr.unshift(newarr);
 document.write("全部数据如下:
");
 document.write(arr.join(","));
</script>

运行这段代码，执行结果如图 12.17所示。

图 12.17 unshift方法演示

12.3.11 toString方法：返回一个包含数组中全部数据的字符串

【功能说明】toString方法是所有 JavaScript对象所共有的方法，对于 Array对象来说，
该方法与 join 方法的功能类似，它将数组中的所有元素连接为一个字符串，各个元素之间

使用逗号（“,”）连接。
【基本语法】array.toString()
【实例演示】

<script>
 var arr=new Array(1,2,3,4,"this ia ","a test");
 document.write(arr.toString());
</script>

运行这段代码，执行结果如图 12.18所示。

图 12.18 toString方法演示

12.4 进一步讨论：二维数组的实现
许多编程语言中都提供定义和使用二维或多维数组的功能。JavaScript 通过 Array 对象

创建的数组都是一维的，但是可以通过在数组元素中使用数组来实现二维数组。如果把一维

数组看作为一行数据表格，那么，二维数组就可以看作为多行数据表格，因此，二维数组常

用来存储含有多个数据项的条目性数据内容，比如表 12.1 所示的数据表中的数据就适合使
用二维数组进行存储。

表 12.1 二维数据表

01042403 韩永强 环境保护导论 88

01042404 黄大伟 数值分析 85

01042405 黎明 人工举升 90

01042406 李高飞 高等渗流力学 79

01042407 王小虎 高等流体力学 96

01042408 田琳 数值传热学 85

下面的代码创建了一个二维数组的构造函数。
【实例演示】

 function Array2(m,n)
 {
 for(var i=0;i<m;i++)
 {
 var arrtmp=new Array(n);
 this[i]=arrtmp;
 }
 this.length=m;
 }

这个构造函数可以根据指定的参数创建一个 m 行 n 列的二维数组。下面通过一个具体
的例子来看一下如何使用和操作二维数组存储数据。

<script>
 var counter=0;
 //二维数组构造函数
 function Array2(m,n)
 {
 var arr=new Array(m);

 for(var i=0;i<m;i++)
 {
 var arrtmp=new Array(n);
 arr[i]=arrtmp;
 }
 return arr;
 }
 var arrstudent=new Array2(1,4)
 var arr=new Array(4);
 /* 将输入的数据存入数组
 同时按成绩降序排列显示
 */
 function toarr()
 {
 if(event.keyCode==13)
 {
 var id=document.forms[0].stunum.value;
 var name=document.forms[0].stuname.value;
 var sclass=document.forms[0].stuclass.value;
 var score=document.forms[0].stumark.value;
 arrstudent[counter]=new Array(id,name,sclass,score);
 counter++;
 document.forms[0].stunum.value="";
 document.forms[0].stuname.value="";
 document.forms[0].stumark.value="";
 document.forms[0].stunum.focus();
 listAll();
 }
 }
 //以表格的形式输出数组中的数据
 function listAll()
 {
 sortBy(3);//按成绩排序
 var str="<table cellpadding='0' cellspacing='0' border='1'>";
 for(var i=0;i<counter;i++)
 {
 str+="<tr>"
 for(var j=0;j<4;j++)
 {
 str+="<td>"+arrstudent[i][j]+"</td>";
 }
 str+="</tr>";
 }
 str+="</table>";
 document.getElementById("list").innerHTML=str;
 }
 /*
 二维数组的排序操作
 可以按数组中的任意一列进行排序，降序
 */
 function sortBy(index)
 {
 for(var i=0;i<arrstudent.length-1;i++)
 {
 for(var j=i+1;j<arrstudent.length;j++)
 {
 if(arrstudent[i][index].localeCompare(arrstudent[j][index])==-1)
 {
 var temp=new Array(4);
 //交换两行
 temp=arrstudent[i];
 arrstudent[i]=arrstudent[j];
 arrstudent[j]=temp;
 }
 }
 }
 }
</script>
<form>
 <table cellpadding="0" cellspacing="0">
 <tr bgcolor="#CCCCCC" bordercolor="#333333">
 <th>学号</th><th>姓名</th><th>课程</th><th>成绩</th>
 </tr>
 <tr>
 <td><input type="text" name="stunum" size="10" /></td>
 <td><input type="text" name="stuname" size="10" /></td>
 <td> <select name="stuclass">
 <option value="数值分析">数值分析</option>
 <option value="人工举升">人工举升</option>
 <option value="数值传热学">数值传热学</option>
 <option value="高等流体力学">高等流体力学</option>

 </select>
 </td>
 <td><input type="text" name="stumark" size="4" onKeyDown="toarr()"/></td>
 </tr>
 <tr>
 <td align="center" colspan="4">
 <div id="list" onClick="listAll()" style="background:#CCCCCC">列出所有成绩</div>
 </td>
 </tr>
 </table>
</form>

这段代码中定义了 4个函数：Array2、toarr、listAll和 sortBy，分别实现了构造二维数
组、将收入数据存入二维数组、以表格形式显示存储数据和对二维数组中的数据进行排序的

功能。运行这段代码，执行效果如图 12.19所示。
分别输入学号、姓名并选择课程，输入成绩后按下回车键，该条信息（包括学号、姓名、

课程和成绩 4项）将被存入数组中并显示在下面列表中，之后学号的文本框将自动获取焦点，
如图 12.20所示。

 图 12.19 程序运行效果 图 12.20 成绩输入后

继续按学号顺序输入多条数据，可以看到输出列表中的数据与输入顺序无关，而是以成

绩进行降序排序，如图 12.21所示。

图 12.21 数据输出列表

第 16章

Window对象：访问和控制浏览器窗口

Window对象是 DOM对象模型的最顶层对象，代表了浏览器中用于显示文档内容的窗
口，通过该对象可以访问 DOM对象模型中的所有对象。Window对象和 Javascript的内置对
象一样，使用的时候无需手动创建，只要在 HTML文档或者Web文档中使用了<Body>标签
或者<frame>标签，系统就会自动创建一个Window对象。

16.1 Window对象的方法

16.1.1 alert方法：弹出一个警告对话框

【功能说明】使用 Alert方法可以弹出一个含有制定内容的警告对话框，该对话框中还
包含有一个叹号图标和一个“确定”按钮。
【基本语法】window.alert(message)
其中，message为任意有效的字符串表达式，该字符串指定了要在对话框上显示的内容。
【实例演示】下面的代码利用 Alert方法弹出了一个含有提示信息的对话框。

<body>
 <script>
 var strmsg="Window对象的Alert方法测试！"；
 window.alert(strmsg)；
 </script>
</body>

运行这段代码可以看到图 16.1所示的对话框。

图 16.1 Alert方法演示

16.1.2 confirm：弹出一个选择对话框

【功能说明】该方法与 Alert方法相似，弹出一个含有指定信息的对话框，但是该方法
同 Alert方法弹出的对话框也有不同之处，调用该方法弹出的对话框中含有一个问号图标和
两个按钮，一个按钮的标题为“确定”，另一个按钮的标题为“取消”。
该方法的返回值为布尔类型，如果用户单击了“确定”按钮，则该方法返回 True；否
则返回 False。
【基本语法】[blvar=]window.confirm(message)
参数说明如下。
□ message：可选项，字符串表达式，用于指定在弹出的对话框上显示的信息。
□ blvar：可选项，布尔类型，用于存储 Confirm方法的返回值。
【实例演示】

<title>Confirm方法演示</title>
<body>
 <form>
 <input type="button" onClick="testConfirm()" value="关闭窗口">
 </form>
 <script>
 function testConfirm()
 {
 var blvar;
 blvar=confirm("你真的要关闭该窗口吗？");
 if (blvar)
 window.close();
 else
 window.alert("你取消了关闭窗口操作!") ;
 }
 </script>

</body>

运行这段代码后会在窗口中显示一个标题为“关闭窗口”的按钮，如果单击了该按钮就

会弹出一个对话框（如图 16.2 所示），提示是否要关闭窗口。如果选择了“确定”，则系统
会关闭当前窗口；否则关闭窗口的操作将不被执行。

图 16.2 Confirm方法岩石

16.1.3 prompt方法：弹出一个供用户输入信息的对话框

【功能说明】该方法弹出对话框，该对话框中含有一个文本框并允许在其中输入信息。

在调用该方法时可以设置显示在文本框中的默认值。该方法的返回值为在文本框中输入的内

容，如果用户没有在文本框中输入任何内容，则该函数的返回值为 null。
【基本语法】window.prompt(message,defaultvalue)
参数说明如下。
□ message：可选项，字符串表达式，用于指定显示在对话框上的提示信息。
□ defaultvalue：可选项，字符串或某一数字，用于指定显示在文本框中的默认值。
【实例演示】

 <script>
 var strmsg="请输入你的姓名：";
 var strname="李小虎";
 strname=window.prompt(strmsg,strname);
 if(strname!="")
 {
 if (window.confirm("你就是大名鼎鼎的"+strname+"吗？"))
 window.alert("见到你真是太荣幸了！！")
 }
 </script>

运行这段代码弹出对话框，如图 16.3所示，可以看到这个对话框中含有指定的提示信息和默
认值。另外，这段代码中还用到了Confirm方法和Alert方法，这些代码的功能非常简单，不再赘
述。

图 16.3 prompt方法演示

16.1.4 blur方法：使Window失去焦点

【功能说明】调用该方法后当前Window窗口将失去焦点，此时，Window对象的 onblur
事件将被触发。如果同时打开了多个窗口，则调用该方法后可以使当前窗口成为底层窗口。
【基本语法】window.blur()
【实例演示】下面的代码演示了如何使用 blur方法使Window失去焦点而触发 onblur事件。

<title>blur方法演示</title>
<body onBlur="window.alert('窗口失去了焦点')">
 <form>

 <input type="button" value="失去焦点" onClick="window.blur()" />
 </form>
</body>

运行这段代码后，会在窗口上出现一个标题为“失去焦点”的按钮，点击该按钮后，当

前窗口将失去焦点，因此，窗口的 onblur方法会被触发，弹出一个含有“窗口失去了焦点”
字样的对话框，如图 16.4所示。

图 16.4 blur方法演示

16.1.5 setInterval方法：指定每隔多长时间执行指定代码一次

【功能说明】该方法以毫秒为单位设置一个时间间隔，此后，每个指定的时间间隔系统

将执行指定的一次代码，直到窗口被关闭或者 clearInterval方法被调用为止。该方法的返回
值为一个整数，该整数为此次调用 setInterval 的标志，调用 clearInterval 方法时使用该整数
作为参数可以取消定时执行代码的操作。
【基本语法】window.setInterval(expression,msec[arg1,arg2,…])
参数说明如下。
□ expression：必须项，可执行代码或函数名，用于指定要被反复执行的内容。
□ msec：必选项，常整型数据，以毫秒为单位指定时间间隔。
□ arg1、arg2：可选项，如果 expression参数指定为某个函数名，可以使用这些选项指

定函数参数。
注意：如果 expression为函数名，则不需要把函数名用引号扩起来，如果为执行语句，

则需要使用引号将这些代码扩起来。
【实例演示】下面的代码利用 setInterval实现了倒计时的功能。

<title>setInterval方法演示</title>
<body>
 <form>
 你已经停留<input type="text" name="htime" size="4">秒，
 还可以停留<input type="text" name="time" size="4">秒
 </form>
 <script>
 var inittime=20;
 var havetime=0;
 //设置计时执行代码
 window.setInterval(settime,1000);
 //定义函数，实现时间加减功能
 function settime()
 {
 inittime--;
 havetime++;
 if (inittime==0)
 {
 window.alert("该页面运行的停留时间已经结束，窗口即将关闭");
 window.close();
 }
 document.forms[0].time.value=inittime;
 document.forms[0].htime.value=havetime;
 }
 </script>
</body>

这段代码通过 setInterval函数设置每隔一秒执行函数 settime一次。该函数每执行一次，

就将用户在该页面的停留时间加 1，而将还可停留的时间减 1。当可以停留的时间为 0后，
就弹出提示对话框，之后将关闭当前窗口。运行这段代码，效果如图 16.5所示。

图 16.5 setInterval函数演示

16.1.6 clearInterval方法：清除 setInterval方法产生的作用效果

【功能说明】该方法用于清除 setInterval 函数的作用效果，该方法的参数为 setInterval
函数的返回值，以指定的 setInterval 方法的返回值作为参数，可以清除与之相对应的
setInterval方法的作用效果。
【基本语法】window.clearInterval(intervalID)
其中，intervalID为 setInterval函数的返回值。
【实例演示】下面的代码演示了如何利用 clearInterval方法清除 setInterval方法的作用效果。

<title>setInterval方法演示</title>
<body >
<form name="frm">
 <input name="txt" border="0" size="0">
 <input type="button" value="停止" onClick="window.clearInterval(intervalID)">
</form>
<script>
 var intervalID
 intervalID=window.setInterval(setSize,200)
 function setSize()
 {
 document.frm.txt.size++;
 }
</script>
</body>

运行这段代码，窗口中的文本框的长度将不断地增加，直到点击了“停止”按钮。代码

中通过 setInterval方法将文本框的长度每隔 200毫秒增加一个单位，而单击“停止”按钮时，
将调用 clearInterval 方法结束 setInterval 方法的作用效果，因此，文本框的长度不再增加。
执行效果如图 16.6所示。

图 16.6 clearInterval方法演示

16.1.7 setTimeout方法：指定多长时间之后执行指定的代码

【功能说明】该方法同 setInterval 方法不同，setInterval 方法是指定每隔一段时间后就
执行指定的代码一次，因此，指定的代码是被反复执行的。而 setTimeout方法则只在指定的
时间间隔之后，只执行指定代码一次，当指定代码被执行后，setTimeout方法不再发挥作用。

该方法的返回值为一个整数，该整数为此次调用 setTimeout方法的标志。
【基本语法】window.setTimeout((expression,msec[arg1,arg2,…])
参数说明如下。
□ expression：必项，可执行代码或函数名，指定的内容在规定时间之后，被执行一次。
□ msec：必选项，常整型数据，以毫秒为单位指定时间间隔。
□ arg1、arg2：可选项，如果 expression参数指定为某个函数名，可以使用这些选项指

定函数参数。
【实例演示】下面的代码演示了 setInterval方法和 setTimeout方法的不同。

<title>setTimeout方法演示</title>
<body >
<form name="frm">
 代码已执行了<input name="txt" value="25" size="3">秒
</form>
<script>
 var timeLen=24;
 window.setInterval("document.frm.txt.value=timeLen--",1000);
 window.setTimeout("window.alert('已经过了5秒')",5*1000);
</script>
</body>

这段代码体现了 setInterval 方法和 setTimeout 方法的不同，setInterval 方法每隔 1 秒就
执行指定的代码一次，将指定的时间减去 1秒，而 setTimeout方法则只在 5秒后执行一次。
运行这段代码可以看到图 16.7所示的页面效果。

图 16.7 setTimeout方法演示

16.1.8 clearTimeout方法：清除 setTimeout方法的作用效果

【功能说明】在 setTimeout 方法指定的时间间隔之前调用 setTimeout 方法可以取消
setTimeout 方法的作用效果。也就是说，如果在 setTimeout 指定的代码执行之前调用了
learTimeout，则在规定的时间间隔到达以后，指定的代码将不会再被执行。
该方法的参数为 setTimeout 方法的返回值，如果多次使用 setTimeout 方法，则调用

clearTimeout方法时某个 setTimeout方法的返回值作为参数，可以清除指定 setTimeout方法
的作用效果。
【基本语法】clearTimeout(intervalID)
其中，intervalID为 setTimeout函数的返回值。

16.1.9 close方法：关闭Window窗口

【功能说明】调用该方法后，系统会弹出一个对话框询问是否关闭窗口，如图 16.8 所
示。点击“是”窗口将被关闭，点击“否”关闭操作将被取消。如果想直接关闭窗口，而不

出现询问对话框，可以在调用 close方法之前先设置 window对象的 opener属性为 null。
【基本语法】window.close()
【实例演示】下面的代码演示了如何直接关闭浏览器窗口。

<form name="frm">
 <input type="button" value="关闭窗口" onClick="closeWindow()">
</form>
<script>
 function closeWindow()
 {
 window.opener=null;
 window.close();
 }
</script>

执行这段代码会在浏览器窗口上出现一个标题为“关闭窗口”的按钮，点击该按钮窗口

将被直接关闭，而不弹出任何对话框。

图 16.8 询问对话框

16.1.10 focus方法：使窗口获得焦点

【功能说明】调用该方法之后，window窗口将成为当前窗口。
【基本语法】window.focus()

16.1.11 moveBy方法：通过指定偏移量来移动窗口

【功能说明】该方法通过指定窗口左上角的坐标偏移量来移动窗口，即在现在坐标的基

础上按指定的值改变窗口的位置。
【基本语法】window.moveBy(ix,iy)
参数说明如下。
□ ix：必选项，整数，窗口左上角横坐标的改变量。
□ iy：必选项，整数，窗口左上角纵坐标的改变量。
注意：这里采用的坐标系统为计算机的默认坐标系统，即屏幕左上角为坐标原点，向右

为横坐标正方向，横坐标增加，向下为纵坐标正方向，纵坐标增加。
【实例演示】下面的代码演示了如何利用 moveBy方法移动窗口。

<script>
 var imoved=0;
 var intervalID;
 intervalID=window.setInterval(moveWindow,100);
 function moveWindow()
 {
 //移动窗口
 window.moveBy(1,1);
 imoved++;
 //如果与演示坐标的偏移量达到500则停止移动
 if (imoved>=500)
 window.clearInterval(intervalID);
 }
</script>

这段代码运行后，每隔 0.1秒就将窗口向右和向左分别移动 1个像素，如果与原始坐标
相比，移动的偏移量超过 500，则停止移动窗口。

16.1.12 moveTo方法：移动窗口到指定的坐标

【功能说明】该方法可以将窗口的左上角移动到指定的坐标处，该方法与 moveBy方法
不同，该方法所指定的数值不是偏移量而是绝对坐标。
【基本语法】window.moveTo(xp,yp)
参数说明如下。
□ xp：必选项，整数，指定的窗口左上角的新的横坐标。
□ yp：必选项，整数，指定的窗口左上角的新的纵坐标。
【实例演示】下面的代码演示了如何使用 moveTo方法移动窗口。

<script>
 var imoved=0;
 intervalID=window.setInterval(moveWindow,100);
 function moveWindow()
 {
 var ipx,ipy;
 //随机产生x y坐标
 ipx=Math.round(Math.random()*800);
 ipy=Math.round(Math.random()*800);
 window.moveTo(ipx,ipy);
 imoved++;
 if (imoved>=50)
 window.clearInterval(intervalID);
 }
</script>

这段代码利用随机产生的横坐标和纵坐标来移动窗体，执行这段代码之后，窗口将在屏

幕上不停的跳动，直到跳到次数达到 50次为止。

16.1.13 open方法：打开一个新的窗口

【功能说明】该方法可以根据指定的属性打开一个新窗口，并可以在该窗口中显示指定

URL 中的内容。该方法的返回值为一个窗口对象，通过该对象可以访问和操作新打开的窗
口。
【基本语法】window.open([sURL][,sName][, sFeatures])
参数说明如下。
□ sURL：可选项，字符串表达式，用于指定在新窗口中显示的内容，如果没有指定该

项，则在窗口中显示的内容为空。
□ sName：可选项，字符串表达式，用于指定窗口的名称，另外该项也与 HTML 标签

<Target>具有相同的作用相同，可以指定窗口的打开位置和类型。表 16.1列出了发挥这种作
用时 sName的取值及意义说明。

表 16.1 sName具有特殊意义的可用值及说明

值 说明

_blank sURL参数所指定的内容将被显示一个新的、没有名字的窗口中

_media sURL 参数所指定的内容将被显示在 HTML 文档的媒体工具中，该选项仅在
IE 6.0及更新版本中可用

_parent sURL 参数所指定的内容将被显示在当前框架的父框架中，如果当前框架没有
父框架，则该选型的作用与_self相同

_search sURL参数所指定的内容将被显示在 IE的搜索面板中，该选项仅在 IE 5.0及更
新版本中可用

_self sURL参数所指定的内容将被显示在当前窗口中
_top sURL 参数所指定的内容将取代任何将被加载的框架集，如果当前页面中没有

定义任何框架则该选项的作用与_self参数相同

□ sFeatures：可选项，用于指定新窗口的属性，该选项可以是一个参数也可以是多个参
数的组合。关于该参数的可用值及说明请参考表 16.2。

表 16.2 窗口属性的常用设置及说明

属性 说明
fullscreen 指定窗口是否全屏显示，取 yes表明全屏显示，取 no不全屏显示
height 以像素为单位指定窗口的高度
width 以像素为单位指定窗口的宽度
left 以像素为单位指定窗口距屏幕左边界的距离
top 以像素为单位指定窗口距屏幕上边界的距离
location 指定窗口中是否显示地址栏，取 yes表明显示地址栏，取 no不显示地址栏
resizable 指定窗口是否可改变大小，取 yes表明窗口可以改变大小，取 no则不可以改

变
scrollbars 指定是否在窗口中显示滚动条，取 yes显示
status 指定是否在窗口中显示状态栏，取 yes显示
titlebar 指定是否在窗口中显示标题栏，取 yes显示
toolbar 指定是否在窗口中显示工具栏，取 yes显示

【实例演示】

<script>
 //在新窗口中打开指定页面
 function openNew()
 {
 window.open("http://www.baidu.com","_blank");
 }
 //在当前窗口中打开指定页面
 function openOnSelf()
 {
 window.open("http://www.baidu.com","_self");
 }
 //打开新窗口并输入一些信息
 function openMsg()
 {
 var newWin;
 newWin=window.open("","公告","height=200,width=200,toolbar=no,
 menubar=no,location=no,top=200,left=200");
 newWin.document.write("<h4 align='center'>公告</h4>");
 newWin.document.write("这是一个open方法测试");
 }
</script>
<form>
 <input type="button" onClick="openOnSelf()" value="在当前窗口打开百度" />

 <input type="button" onClick="openNew()" value="在新窗口中打开百度">
<center>
 <input type="button" onClick="openMsg()" value="弹出公告"></center>
</form>

这段代码中定义了 3个函数，分别实现了在新窗口中打开指定页面、在当前窗口中打开指
定页面和打开新窗口并输入一些指定信息的功能。运行这段代码可以看到图 16.9所示的效果。
单击该页面中的第一个按钮，可以将当前窗口中的内容替换为百度首页；单击第二个按

钮会在新的窗口中打开百度首页；点击第三个按钮可以弹出图 16.10所示的窗口。

 图 16.9 open方法演示图 图 16.10 弹出的对话框窗口

16.1.14 navigate方法：在当前窗口中加载指定页面

【功能说明】该方法可以把指定的页面加载到当前窗口中。
【基本语法】window.navigate(sURL)
其中，sURL为要加载到当前窗口中的页面的地址。

16.1.15 resizeBy方法：通过指定窗口右下角坐标的偏移量来缩
放窗口

【功能说明】该方法可以通过指定窗口右下角的横坐标和纵坐标的偏移量来移动窗口右

下角的位置，而窗口左上角的位置不变，因此起到了改变窗口大小的作用。
【基本语法】window.resizeBy(ix,iy)
语法说明如下。
□ ix：必选项，整型数据，用于指定窗口右下角横坐标的偏移量。
□ iy：必选项，整型数据，用于指定窗口右下角的纵坐标的偏移量。
【实例演示】

 <script>
 var iresized=0;
 var ixy=-1;
 window.setInterval(resizeWindow,10);
 function resizeWindow()
 {
 window.resizeBy(ixy,ixy);
 iresized++;
 if (iresized>500)
 {
 ixy*=-1;
 iresized=0;
 }
 }
 </script>

这段代码每隔 10毫秒就将窗口的大小增加或减小 1个像素，如果窗口的改变超过 500个像
素，则窗口向相反的方向改变。即：如果窗口增加了 500个像素，则窗口开始减小；如果窗口
减小了 500个像素，则窗口开始增加。运行这段代码窗口会先减小再增加，如此反复不止。

16.1.16 resizeTo 方法：通过指定窗口右下角的新坐标来改变窗
口的大小

【功能说明】该方法同 resizeBy方法类似，也是通过改变窗口右下角的位置来改变窗口
的大。不同的是，resizeBy指定的是窗口右下角坐标的偏移量，而 resizeTo方法指定的则是
窗口右下角的新的坐标，即窗口右下角直接移动到指定的坐标上。

【基本语法】window.resizeTo(ix,iy)
参数说明如下。
□ ix：必选项，整型数据，用于指定窗口右下角的新的横坐标。
□ iy：必选项，整型数据，用于指定窗口右下角的新的纵坐标。
【实例演示】下面的代码利用 rsizeTo方法把窗口的大小调整到了屏幕大小。

<form>
 <input type="button" onClick="openNewWindow()" value="开始">
</form>
<script>
 var objwin;
 var ih,iw;
 var ihok,iwok;
 var intervalID;
 function openNewWindow()
 {
 ih=iw=100;
 ihok=iwok=0;
 //弹出新的对话框
 objwin=window.open("rsizeTo.html","resizeTo方法测试","height=100,width=100,
 top=0,left=0,resizable=yes");
 //改变窗口的大小，直到窗口达到屏幕大小
 intervalID=objwin.setInterval(resizeWindow,10);
 }
 function resizeWindow()
 {
 ih+=5;
 iw+=5;
 if(ih>screen.height)
 {
 ih=screen.height;
 ihok=1;
 }
 if(iw>screen.width)
 {
 iw=screen.width;
 iwok=1;
 }
 //如果iwok+ihok=2则说明窗口的长和宽均达到屏幕大小
 if(iwok+ihok>=2)
 objwin.clearInterval(intervalID);
 else
 objwin.resizeTo(iw,ih);
 }
</script>

运行这段代码后，会在窗口中出现一个“开始”按钮，单击该按钮，弹出一个长和宽均

为 100像素的窗口，然后，窗口的长和宽开始每隔 10毫秒增加 5个像素，直到长和宽均达
到屏幕大小为止。

16.1.17 scrollTo方法：滚动窗口中的内容到新的位置

【功能说明】该方法可以按给定的横坐标和纵坐标的偏移量来滚动显示窗口中的内容。
【基本语法】window.scrollTo(ix,iy)
参数说明如下。
□ ix：必选项，整型数据，以像素为单位指定窗口横坐标的滚动偏移量。
□ iy：必选项，整型数据，以像素为单位指定窗口纵坐标的滚动偏移量。
注意：只有当窗口中的内容无法在窗口中全部显示时，即窗口中出现滚动条时，窗口才

可以滚动，否则调用 scrollTo方法将得不到任何效果。
【实例演示】下面的代码实现了双击自动滚屏的效果。

<form onDblClick="toScroll()">
<script>
 var i,intervalID;
 var iw=0;

 var ih=1;
 document.write("<h4>双击开始滚屏</h4>");
 for(i=1;i<=100;i++)
 {
 document.write(i);
 document.write("
");
 }
 function toScroll()
 {
 intervalID=window.setInterval(scrollWindow,10);
 }
 function scrollWindow()
 {
 ih++;
 window.scroll(iw,ih);
 }
</script>
</form>

这段代码运行时，首先在窗口上输出了 100行数字，当用户双击窗口中的内容时，程序
调用 toScroll函数开始滚屏，直到窗口最下面的内容显示出来为止。

16.1.18 scrollBy方法：按给定的偏移量来滚动窗口中的内容

【功能说明】该方法和 scrollTo方法类似，可以实现窗口的滚动显示。不同的是，scrollTo
方法所指定的参数是窗口要滚动到的新位置，而 scrollBy所指定的参数则是在现有的基础上
所有滚动的新的距离，即 scrollTo方法指定的滚动距离是滚动距离的总量，而 scrollBy方法
指定的滚动距离是在现有滚动距离基础上的新增量。
【基本语法】window.scrollBy(ix,iy)
参数说明如下。
□ ix：必选项，整型数据，用于指定窗口横坐标的滚动距离增量。
□ iy：必选项，整型数据，用于指定窗口纵坐标的滚动距离增量。
注意：只有当窗口中的内容无法在窗口中全部显示时，即窗口中出现滚动条时，窗口才

可以滚动，否则调用 scrollTo方法将得不到任何效果。

16.1.19 showModalDialog方法：打开一个模式对话框以显示指定内容

【功能说明】模式对话框是相对非模式对话框来说的，打开一个模式对话框后，该对话

框一直具有焦点直到该对话框被关闭，在此期间所有的操作只能针对该模式对话框进行，其

他窗口无法获得焦点。showModalDialog方法可以根据指定的属性打开一个模式对话框并显
示指定的内容，另外还可以通过该方法的参数给打开的对话框传送数据。
该方法的返回值为该对话框窗口 returnValue属性的值。
【基本语法】window.showModalDialog(sURL[,vArguments][,sFeatures])
参数说明如下。
□ sURL：必选项，字符串表达式，用于指定在打开的模式对话框中显示的内容。
□ vArgument：可选项，任意类型的数据，这些数据将被传递给打开的对话框，在对话

框中可以使用 dialogArguments属性来获取传递给对话框的数据。
□ sFeatures：可选项，字符串表达式，用于指定所打开的对话框的属性。关于该选项的

部分常用设置即说明请参考表 16.3。

表 16.3 sFeatures选项的可用值及说明

参数 说明
dialogHeight 整型或浮点型数据，用于指定打开的模式对话框的高度

dialogWidth 整型或浮点型数据，用于指定打开的模式对话框的宽度
dialogLeft 整型或浮点型数据，用于指定打开的模式对话框距屏幕左边界的距离
dialogTop 整型或浮点型数据，用于指定打开的模式对话框距屏幕上边界的距离
center 用于指定对话框是否显示在屏幕中间，默认为居中
edge 用于指定对话框的边框的类型，可用值有两个，sunken和 raised，默认为 raised
help 用于指定是否在对话框窗口中显示与上下问相关的帮助图标，默认为显示
resizable 用于指定窗口大小是否可调，默认为不可调
scroll 用于指定是否在窗口中显示滚动条，默认为显示
status 用于指定是否在窗口中显示状态栏

说明：dialogHeight、dialogWidth、dialogLeft、dialogTop的值可以采用 cm，mm，in，
pt， pc或者 px作为单位，而 center，help，resizable，scroll和 status的值为 yes或 no，表
16.3中的选项可以组合使用，各选项之间通过“;”隔开。
【实例演示】下面的例子利用 openModalDialog方法打开了一个模式对话框并在其中输
出了一些内容。首先创建一个 HTML文件并在其中输入如下代码。

<title>
 showModalDialog方法测试
</title>
<body>
<script>
 var sFeatures;
 var para;
 //设置传递给对话框的参数
 para="
this is a test
openModalDialog方法测试" ;
 para=para+"
在关闭该窗口以前，其他窗口无法获得焦点";
 sFeatures="center=yes;edge=raised;status=yes;";
 sFeatures=sFeatures+"dialogHeight=250 px;dialogWidth=250 px";
 window.showModalDialog("dialog.html",para,sFeatures);
</script>
</body>

然后再创建一个名为“dialog.html”的 HTML文件并在其中输入如下代码。

<p>openModalDialog方法测试。</p>
<p> 获取的参数为：
<script>
 document.write(window.dialogArguments);
</script>
</p>

运行第一段代码，窗口中弹出一个对话框，如图 16.11所示。

图 16.11 showModalDialog方法演示

可以看到指定的数据成功的传递给了打开的模式对话框，而且在对话框中可以很容易地

获取并显示这些数据。

16.1.20 showModalessDialog 方法：打开一个非模式对话框并
显示指定内容

【功能说明】非模式对话框与模式对话框不同，在打开非模式对话框时还可以对其他窗

口进行操作。showModalessDialog方法的作用就是创建一个非模式对话框并在其中显示指定
的页面内容。
该方法的返回值与 showModalDialog方法也不同，该方法的返回值为打开的窗口对象。
【基本语法】window.showModalessDialog(sURL[,vArguments][,sFeatures])
参数说明如下。
□ sURL：必选项，字符串表达式，用于指定在打开的非模式对话框中显示的内容。
□ vArgument：可选项，任意类型的数据，这些数据将被传递给打开的对话框，在对话

框中可以使用 dialogArguments属性来获取传递给对话框的数据。
□ sFeatures：可选项，字符串表达式，用于指定所打开的对话框的属性。关于该选项的

部分常用设置即说明请参考表 16.3。
【实例演示】

<script>
 var sFeatures;
 var para;
 var newWin;
 para="showModalessDialog方法演示" ;
 para+="
打开该窗口后还可操作其他窗口
";
 para+="<center><input type='button' value='关闭该窗口' onclick='window.opener=null;
 window.close();'</center>"
 sFeatures="center=yes;edge=raised;status=yes;resizable=yes;";
 sFeatures=sFeatures+"dialogHeight=250 px;dialogWidth=250 px";
 newWin=window.showModelessDialog("dialog.html","",sFeatures);
 newWin.document.write(para);
</script>

这段代码通过 showModalessDialog 方法打开了一个非模式对话框，然后通过对该对话
框窗口的引用向对话框中写入了一些内容。运行这段代码可以看到图 16.12所示的效果。

图 16.12 showModalessDialog方法演示

16.2 Window对象的属性

16.2.1 closed属性：判断引用的窗口是否已经关闭

【功能说明】该属性为只读属性，其返回值为布尔子类型，如果引用的窗口已经关闭，

则该属性返回 True，否则，返回 False。
【基本语法】window.closed

【实例演示】下面的代码计算了弹出窗口的存在时间。

<script>
 var newWin;
 var intervalID;
 var timeLen=0;
 function getTimeLen()
 {
 //如果窗口已经关闭
 if (newWin.closed)
 {
 window.clearInterval(intervalID);
 window.alert("窗口打开了"+timeLen+"秒");
 }
 else
 timeLen++;
 }
 function openNew()
 {
 newWin=window.open("","公告","height=200,width=200,toolbar=no,
 menubar=no,status=yes,location=no,top=200,left=200");
 newWin.document.write("<h4 align='center'>公告</h4>");
 newWin.document.write("这是一个closed属性测试");
 newWin.document.write("<center><input type='button' value='关闭窗口' onclick='window.opner=null;
 window.close();'</center>");
 intervalID=window.setInterval(getTimeLen,1000);
 }
</script>
<form><input type="button" onclick="openNew()" value="打开窗口"></form>

这段代码利用 setInterval方法每隔一秒钟调用 closed属性判断一下窗口是否已经关闭。
如果窗口已经关闭，就弹出对话框显示窗口一共存在了多长时间（如图 16.13 所示）；否则
就将变量 timeLen加 1，以记录窗口存在的时间。

图 16.13 closed属性演示

16.2.2 defaultStatus属性：设置或返回窗口的缺省状态信息

【功能说明】该属性为可读写属性，利用该属性可以设置或读取浏览器窗口的默认状态

信息。如果没有设置该属性，则打开一个窗口后，其默认状态信息为“完成”。
【基本语法】wondow.defaultStatus[=smessage]
其中，smessage就是要设置的状态信息。
【实例演示】下面的代码演示了如何使用 defaultStatus属性设置窗口的默认状态信息。

<script>
 window.defaultStatus="defaultStatus属性测试"
</script>

运行这段代码，效果如图 16.14所示。从图中可以看到状态栏上所设置的信息。

图 16.14 defaultStatus属性演示

16.2.3 dialogArguments属性：获取传递给模式对话框的数据

【功能说明】在使用 showModalDialog方法创建模式对话框时，可以使用该方法的第二
个参数给打开的模式对话框传递数据。在模式对话框所显示的页面中可以模式对话框的

dialogArguments属性来获取传递给对话框的数据。
【基本语法】[data=]window. dialogArguments
其中，data 可以为任意类型的变量，用来接收 dialogArguments 属性的值。关于该属性
的演示实例请参考 showModalDialog方法，在此不再赘述。

16.2.4 dialogHeight、dialogWidth属性：设置或返回模式对话框
的高度、宽度

【功能说明】利用这两个属性可以设置或读取所打开的模式对话框的高度和宽度。设置

时可采用 cm，mm，in，pt，pc或者 px为单位，默认为 px。
【基本语法】window.dialogHeight[=nheight] window.dialogWidth[=nwidth]
其中，nheight和 nwidth均为整型数据，用于设置对话框的高度和宽度。
注意：只有使用 showModalDialog 和 showModalessDialog 方法打开的窗口才可以使用

这两个属性。
dialogHeight 属性和 dialogWidth 属性一般在 showModalDialog 和 showModalessDialog

方法的第三个参数（sFeatures）中使用，具体的演示实例请参考第 16.19 小节和第 16.20 小
节的演示实例，在此不再赘述。

16.2.5 dialogLeft、dialogTop属性：设置或返回对话框的位置

【功能说明】dialogLeft 属性用于设置对话框左侧距屏幕左边界的距离，也就是对话框
左上角的横坐标。dialogTop 属性用于设置对话框上侧距屏幕上边界的距离，也就是对话框
左上角的纵坐标。这两个属性和 dialogHeight 属性与 dialogWidth 属性相同，只能作用于使
用 showModalDialog或者 showModalessDialog方法打开的模式对话框或非模式对话框。
【基本语法】window.dialogLeft[=nleft] window.dialogTop[=ntop]
其中，nleft和 ntop均为整型数据，可用的单位与 dialogHeight属性相同，默认为 px。

16.2.6 opener属性：设置返回对打开当前窗口的副窗口的引用

【功能说明】如果当前窗口是其他窗口使用 open 方法打开的窗口，那么在当前窗口中
使用 opener属性可以返回对当前窗口的创建者的引用，因此，通过 opener属性可以访问创
建当前窗口的副窗口中的数据。
【基本语法】[objWindow=]window.opener
其中，objWindow 为一个 widow 对象，是对打开当前窗口的副窗口对象的引用。下面
的例子演示了 opener属性的作用和用法。首先创建一个 HTML文件并在其中输入如下代码。
【实例演示】

<script>
 var str="width=200,height=200,toolbar=no,status=no";
</script>
<form action="search.html">
 姓名<input type="text" size="10" name="name">

 年龄<input type="text" size="4" name="age">

 住址<input type="text" name="address">

 <input type="button" value="提交" onClick="window.open('opener.html','opener属性演示',str)">
</form>

然后再创建一个名为“search.html”的文件并在其中输入如下代码。
【实例演示】

<script>
 document.write("请确认您提交的信息:
");
 with(window.opener.document.forms[0])
 {
 window.document.write("姓名:"+name.value+"");
 window.document.write("年龄:"+age.value+"");
 window.document.write("地址:"+address.value+"");
 window.document.write("<input type='button' value='关闭窗口' onclick='closeWindow()'>");
 }
 function closeWindow()
 {
 window.opener=null;
 window.close();
 }
</script>

这个实例中第一段代码创建了一个 HTML 表单，在其中输入数据（如图 16.15 所示）
并单击“提交”按钮，就会弹出一个新窗口以显示用户输入的数据，如图 16.16所示。在弹
出的窗口中使用 opener属性来引用原窗口而读取到原窗口表单中的数据。

 图 16.15 在表单中输入数据 图 16.16 弹出窗口

从本例中可以看到，通过 opener 属性可以在打开的窗口中方便地访问打开该窗口的副
窗口中的数据。如果存在多级打开关系，比如：在窗口 A 中打开了窗口 B，而在窗口 B中
又打开了窗口 C，那么就可以使用 C.opener.opener 来引用窗口 A，并可以访问窗口 A 中的
数据。

16.3 Window对象的子对象
Window对象是 DOM对象模型中的顶层对象，其他对象都是Window的子对象，本节

只介绍几个简单的子对象，其他复杂的对象将单独作为一章来介绍。

16.3.1 screen对象：获取计算机屏幕的一些属性

screen对象有很多属性，利用这些可以获得关于计算机屏幕的一些信息，比如长度、宽
度等，这里只介绍几个比较常用的属性。

1．availHeight属性
【功能说明】该属性用于获取计算机屏幕工作区域的高度，所谓的工作区域就是指计算

机屏幕上除了工具条以外的其他区域，利用 availHeight属性可以获取之一区域的高度。
【基本语法】[iheight=]screen.availHeight
其中，iheight为整型变量，单位为 px（像素），用于接收该属性的值。

2．availWidth属性
【功能说明】该属性以像素为单位返回计算机屏幕工作区域的宽度。该属性和

availHeight属性一样都是只读属性，不能改变它们的值。
【基本语法】[iwidth=]screen.availWidth
其中，iwidth为整型变量，用于接收 availWidth属性的返回值。下面的代码演示了如何

利用 availHeight属性和 availWidth属性获取计算机屏幕工作区域的尺寸。
【实例演示】

<script>
 var iheight=100;
 var iwidth=100;
 var intervalID;
 //移动窗口至计算机屏幕的右上角并调整窗口大小
 window.moveTo(0,0);
 window.resizeTo(iwidth,iheight);
 intervalID=window.setInterval(loadWindow,1);
 function loadWindow()
 {
 /* 首先增加窗口的高度至屏幕工作区域高度
 然后再增加窗口的宽度至屏幕工作区域的宽度
 窗口的高度和宽度都达到屏幕工作区域的尺寸时，停止*/
 if(iheight<screen.availHeight)
 iheight+=3;
 else if(iwidth<screen.availWidth)
 iwidth+=3;
 else
 window.clearInterval(intervalID);
 window.resizeTo(iwidth,iheight);
 }
</script>

这段代码利用 screen 对象的 availHeight 属性和 availWidth 属性获取了计算机屏幕工作
区域的尺寸，然后逐渐增加窗口的高度至计算机屏幕工作区域的高度，再增加窗口的宽度至

计算机屏幕工作区域的宽度。
3．height、width属性
【功能说明】这两个属性以像素为单位返回了计算屏幕的垂直分辨率和水平分辨率，因

此，这两个属性的返回值均为整型数据。
【基本语法】screen.height screen.width
【实例演示】

<script>
 var iheight;
 var iwidth;
 iheight=screen.height;
 iwidth=screen.width;
 window.document.write("计算机的当前分辨率为:"+iheight+"×"+iwidth);
</script>

这段代码利用 height属性和 width属性获取了当前计算机的分辨率。运行这段代码后，
可以看到效果如图 16.17所示。

图 16.17 height和 width属性演示

16.3.2 location对象：设置或获取当前 URL的信息

使用 location对象可以设置或返回 URL中的一些信息，一个完整的 URL地址的格式为：
协议://主机:端口/路径名称#hash标识?搜索条件
其中，协议是 URL的起始部分，用于指定该 URL地址所采用的通信协议，比如 http、

ftp等；主机是指该 URL所对应的服务器的名称；端口用于指定服务器用于通信的端口号，
与主机名之间使用冒号隔开；路径名称是指该 URL所对应的网页文件在服务器上的虚拟路
径；如果页面中含有锚点连接，可以使用 hash标志指定页面中的锚点标志，该标志以“#”
开头；搜索条件是指 URL中所含有的查询条件，该查询条件以“?”开头，以“变量名称=
值”的形式出现，多个查询条件之间使用连接符“&”连接。比如：http://upc.edu.cn:8080/wwwroot/
index.html#topicID?id=3876。
利用 location对象可以方便地设置或获取 URL中的各种信息，本节将详细介绍 location
对象的一些常用属性和方法。

1．hash属性
【功能说明】设置或获取 URL中的锚点名称，如果Web页面中使用的锚点连接，通过
设置 location对象的 hash属性可以方便的跳转到页面中的不同部分。
【基本语法】location.hash
下面的代码演示了如何在网页中使用 location 对象的 hash 标志快速定位页面中的

内容。
【实例演示】

<script>
 function getAnchor(str)
 {
 window.location.hash=str;
 }
</script>
<body>
 //创建锚点链接，快速定位网页内容
 杜甫 绝句
 李清照 一剪梅
 崔颢 黄鹤楼
 //下面定义了3个锚点
 <center>绝句</center>
 <!--古诗内容省略，见源代码-->

 <center>一剪梅</center>
 <!--古诗内容省略，见源代码-->

 <center>黄鹤楼</center>
 <!--古诗内容省略，见源代码-->

</body>

这段代码在一个网页文件中创建了 3 个锚点链接，单击其中任一个链接，程序就会
调用 getAnchor 函数来设置 location 对象的 hash 属性为相应的值，以使页面滚动到指定
的内容上。运行这段代码，将窗口缩小并单击链接“崔颢 黄鹤楼”则可以看到图 16.18
所示的效果。

图 16.18 hash属性演示

2．host属性
【功能说明】设置或返回 URL地址中主机的名称和端口号。如果 URL中没有显示的指

定端口号，则 host属性的返回值和 hostname属性的返回值相同。
【基本语法】location.host
3．hostname属性
【功能说明】设置或返回 location对象或 URL地址中的主机名称或者主机的 IP地址。

对大多Web站点服务器来说，该属性的返回值还包含域名和 3w标志。
【基本语法】location.hostname
4．port属性
【功能说明】设置或返回 URL地址中的服务器端口号。如果 URL中没有指定通信端口

号，则该属性的返回值为空字符串。
【基本语法】location.port
5．pathname属性
【功能说明】设置或返回 URL 所对应的网页文件的虚拟路径，其中包括网页文件
的文件名。
【基本语法】location.pathname
6．protocol属性
【功能说明】设置或返回 URl中所包含的通信协议，其中包括“:”，如 http:、ftp:等。
【基本语法】location.protocol
【实例演示】下面的代码演示了如何利用上面几个属性获取 URL中的相应信息。

<table align="center" border="1" bordercolor="#009900" style="border-collapse:collapse">
 <script>
 with(document)
 {
 writeTable("属性","属性值");
 writeTable("URL",location.href);
 writeTable("host",location.host);
 writeTable("hostname",location.hostname);
 writeTable("port",location.port);
 writeTable("pathname",location.pathname);
 writeTable("protocol",location.protocol);
 }
 function writeTable(str1,str2)
 {
 with (document)
 {
 write("<tr>");
 write("<td>");write(str1);write("</td>");
 write("<td>");write(str2);write("</td>");
 write("</tr>");
 }

 }
 </script>
</table>

这段代码通过自定义函数以表格的形式输出了 location对象的部分属性和属性值，运行
这段代码可以看到图 16.19所示的页面效果。

7．href属性
【功能说明】该属性为 location对象的默认属性，是 location对象中最常用的属性。利

用该属性可以设置或返回整个 URl字符串，通过重新设置 location对象的 URL地址，可以
使窗口中的内容跳转到指定的Web页面。
【基本语法】location.href[=surl]
其中，surl是要跳转到的 URL地址。

注意：href 属性返回的 URL 地址是经过编码以后的字符串，比如空格被显示为%20，
要想得到编码前的 URL字符串信息，可以使用 unescape()函数进行处理。
【实例演示】下面的代码演示了如何通过设置 location对象的 href属性来跳转到指定
的页面。

<body>
选择页面
<select onChange="window.location.href=this.options[this.selectedIndex].value">
 <option value="http://www.baidu.com">百度</option>
 <option value="http://www.google.com">谷歌</option>
 <option value="http://www.hao123.com">hao123</option>
</select>
</body>

运行这段代码可以看到图 16.20所示的页面，从列表框中选择一个页面，程序就会加载
相应的页面到当前窗口中。

 图 16.19 location对象属性的使用演示 图 16.20 href属性演示

8．search属性
【功能说明】设置或返回 URL 地址中的查询信息，即 URL 中的问号及问号以后的信
息。如果 HTML 表单中的数据采用 get 方法进行传输（默认），则表单中的数据信息将以
查询条件的形式传送给处理页面。因此可以使用 location对象的 search属性来获取这些数
据并进行处理。
【基本语法】[sSearch=]location.search
其中，sSearch为返回的查询条件字符串。
【实例演示】下面的例子演示了如何获取并处理 URL中的查询字符串。首先创建一个

HTML表单，主要代码如下。

<form action="search.html">
 姓名<input type="text" size="10" name="name">

 年龄<input type="text" size="4" name="age">

 住址<input type="text" name="address">

 <input type="submit" value="提交">
</form>

这个 HTML表单中指定了使用“search.html”来处理表单中的数据，该文件中的主要代
码如下所示。

<script>
 var arrSearch=new Array();
 //调用函数处理查询条件信息
 analysisSearch();
 writeSearchInfor();
 //分析location.search属性的值，从中分离出变量和值
 function analysisSearch()
 {
 var sSearch=unescape(location.search);
 sSearch=sSearch.substr(1);
 arrtemp=sSearch.split("&");
 for(var i=0;i<arrtemp.length;i++)
 {
 temp=arrtemp[i].split("=");

 arrSearch[temp[0]]=temp[1];
 }
 }
 //输出分析结果
 function writeSearchInfor()
 {
 document.write(arrSearch["name"]+"你好,下面是您的个人信息：
");
 for(var sitem in arrSearch)
 {
 var str;
 str=""+sitem+":"+arrSearch[sitem]+""
 document.write(str);
 }
 }

</script>

这段代码中定义了一个函数 anlysisSearch，该函数利用 String 对象的一些方法函数把
location 对象的 search 属性返回的查询条件字符串分割并存储在了数组 arrSearch 中。函数
writeSearchInfor则实现了输出分析结果的功能。
首先运行含有 HTML表单的文件并在表单中填写数据，如图 16.21所示，单击“提

交”按钮后，程序会调用“search.html处理”表单中的数据并输入分析结果，如图 16.22
所示。

 图 16.21 HTML表单中输入的数据 图 16.22 分析结果

9．assign方法
【功能说明】该方法的作用与 href 属性的作用效果相同，可以将当前窗口中的显示内

容跳转到指定的 URL地址。
【基本语法】location.assign(sURL)
其中，sURL为要跳转到的 URL地址。
【实例演示】将 href属性的演示实例的代码修改如下，可以实现相同的效果。

<body>
选择页面
<select onChange="window.location.assign(this.options[this.selectedIndex].value)">
 <option value="http://www.baidu.com">百度</option>
 <option value="http://www.google.com">谷歌</option>
 <option value="http://www.hao123.com">hao123</option>
</select>
</body>

10．reload方法
【功能说明】该方法的作用与浏览器工具栏上的刷新按钮相似，可以重新加载当前页面

至浏览器窗口，该方法的功能更加强大。
【基本语法】location.reload([breload])
其中，breload为布尔型变量或常量，为 True表明要从服务器上重新加载当前页面；为

False时表明从缓存中重新加载当前页面。
【实例演示】下面的代码演示了 reload方法和使用浏览器刷新的区别。

<form>
文本框<input type="text" >
<input type="checkbox" value="test">复选框

列表框<select>
 <option value="http://www.baidu.com">百度</option>

 <option value="http://www.google.com">谷歌</option>
 <option value="http://www.hao123.com">hao123</option>
</select>

<input type="button" value="从服务器刷新" onClick="window.location.reload(true);">
<input type="button" value="从缓存中刷新" onClick="window.location.reload(false);">
</form>

运行这段代码并在其中输入一些数据如图 16.23所示，单击浏览器上的刷新按钮以后，
表单中的数据将继续存在，而单击表单中的刷新按钮之后表单中的数据将被清空。

11．replace方法
【功能说明】使用指定的页面来替换当前窗口中的文档内容，使用该方法后当前页面也

会被从 history 对象中清除掉，因此当前页面不会出现在浏览器的历史记录中，使用浏览器
的“前进”或者“后退”将无法再次查看本页面。
【基本语法】location.replace(sURL)
其中，sURL是要用来替换当前窗口中文档内容的页面的 URL地址。。
【实例演示】下面的代码演示了 replace方法的用法和作用

<script>
 function toReplace(sURL)
 {
 window.location.replace(sURL);
 }
</script>
<form>
 <input type="button" value="替换" onClick="toReplace('16.3.2 location对象_hash.html')">
</form>

运行这段代码后窗口会出现一个“替换”按钮，单击该按钮后程序会调用“16.3.2
location对象_hash.html”页面来替换当前页面，如图 16.24所示，可以看到浏览器窗口中的
“后退”按钮处于不可用状态，因此无法使用“后退”按钮后退到替换前的页面中。

 图 16.23 reload方法演示 图 16.24 replace方法演示

16.3.3 history对象：访问最近所访问的 URL的列表

在浏览Web页面时，浏览器会将最近访问过的页面的 URL地址保存在一个地址中，使
用 history对象可以访问这一列表。history对象共有 4个属性和 3个方法依次介绍如下。

1．current属性
【功能说明】该属性为只读属性，用于返回在历史记录列表中当前所访问的历史页面的

URL地址。
【基本语法】history.current
说明：由于用户的历史页面中往往含有敏感信息，如果所有的 Web 页面都可以使用 history
对象获取到用户的历史访问记录，就会导致用户的隐私或敏感数据被他人窥探，因此，只有具有

签名脚本的网页才可以使用 history对象的 current、next和 previous属性来获取历史页面的 URL
地址。

2．next属性
【功能说明】该属性为只读属性，用于返回在历史记录列表中当前所访问的历史页面的

下一条记录的 URL地址。
【基本语法】history.next
3．previous属性
【功能说明】该属性为只读属性，用于返回在历史记录列表中当前所访问的历史页面的

上一条记录的 URL地址。
【基本语法】history.previous
4．length属性
【功能说明】只读属性，返回历史记录列表中的记录条数。
【基本语法】[nCount=]history.length
其中，nCount为整型数据，用于存储 length属性返回的历史列表中的记录数目。
【实例演示】下面的代码演示了如何使用 length 属性得到当前窗口中的历史记录的数
目。

<script>
 var nCount=window.history.length;
 document.write("您曾使用该窗口访问过"+nCount+"个页面");
</script>

运行这段代码可以看到图 16.25所示的页面。
5．back、forward方法
【功能说明】该两个方法的作用分别与浏览器工具栏上的“后退”和“前进”按钮的作

用相同，通过 back 方法可以返回到历史记录中前一条记录所对应的页面；而使用 forward
方法则可以跳转到历史记录中下一条记录所对应的网页中。
【基本语法】history.back()
history.forward()
【实例演示】

<body>
 前进
 后退
</body>

这段代码在页面上创建了“前进”和“后退”的超级链接，如图 16.26所示，通过这两
个链接可以跳转到历史记录中的上一页和下一页。

 图 16.25 length属性演示 图 16.26 back和 forward方法演示

6．go方法
【功能说明】从历史列表中加载指定的页面到当前窗口。如果指定的页面超出了历史记

录的范围，则历史记录中的最后一页或者最前一页将被显示在窗口当中。
【基本语法】history.go(vloation)
其中，vlocation为必选参数，整数或者字符串，用于从历史记录中调用页面。如果为整

数则调用历史记录列表中相对为当前记录的页面；如果为字符串则为历史记录中某一记录所

对应的 URL 地址。因此，可以使用 history.go(-1)和 history.go(1)实现 history.back 和 history.
forward的作用。
【实例演示】使用下面的代码同样可以实现前进和后退的功能。

<body>
 前进
 后退
</body>

