[image: image1.png]E

TS HMisTIANE, BTN

RSB EAHMEARTE

BesS mEaw S8 memE

[image: image17.png]

	Javascript学习笔记

一. 基础篇
Javascript学习笔记1——数据类型
在Javascript中只有五种简单类型，分别为null,undefined,boolean,String和Number.一种复杂类型：object。
代码类型只有一种形式就是function。
undefined：未定义，我们也可称之为不存在，typeof(undefined)=undefined.
null:为空。undefined是不存在，而null是存在，但却无。typeof(null)=object,但null又不是object，这就是null的神奇而独特之处。
boolean:true or false。
Number:NaN和Infinity是两个特殊之数，NaN代表一个无法用数值来表示的数字，而Infinity代表一个无穷大的数字，相对的，-Infinify则代表负无穷大。在此有两点特殊的地方：NaN!=NaN，Infinity/Infinity=NaN。在Number类型中，有个非常有用的方法：ToString()，他可以接受一个从2到36的数字，然后把我们的Number转换为相应的进制数。
String：字符串，Javascript中没有字符的概念，字符串是表示文本的最小单位。在字符串中，有这样的两个函数，分别是charAt(index)和charCodeAt(index)分别返回对应索引的字符和字符Unicode编码。在我们平时，可能经常会使用下标的方式访问，如s[10]，可是这并不是ECMAScript的标准，应该尽量避免。
Javascript的一切类型都是基于这五个简单类型向上搭建。这五个类型之间又有着万千复杂的关系，undefined,null,0,“”转换为boolean时就是false，而除去这四个外，所有的都为true。但是在这五个当中，除了undefined==null，其他又都不相等。
我们在此又有着这样和强类型语言不通之处，例如123==“123”。那么我们如何能够区分类型呢？这个时候：全等于：===就发挥了用场。
Javascript学习笔记2——函数
在Javascript中，function才是Javascript的第一型。当我们写下一段函数时，其实不过是建立了一个function类型的实体。
就像我们可以写成这样的形式一样：
functionHello() {

 alert("Hello");

 }

 Hello();

 varHello = function() {

 alert("Hello");

 }

 Hello();

其实都是一样的。
但是当我们对其中的函数进行修改时，会发现很奇怪的问题。
 <scripttype="text/javascript">

 functionHello() {

 alert("Hello");

 }

 Hello();

 functionHello() {

 alert("Hello World");

 }

 Hello();

 </script>

我们会看到这样的结果：连续输出了两次Hello World。而非我们想象中的Hello和Hello World。
这是因为Javascript并非完全的按顺序解释执行，而是在解释之前会对Javascript进行一次“预编译”，在预编译的过程中，会把定义式的函数优先执行，也会把所有var变量创建，默认值为undefined，以提高程序的执行效率。也就是说上面的一段代码其实被JS引擎预编译为这样的形式：
 <scripttype="text/javascript">

 varHello = function() {

 alert("Hello");

 }

 Hello = function() {

 alert("Hello World");

 }

 Hello();

 Hello();

 </script>

我们可以通过上面的代码很清晰地看到，其实函数也是数据，也是变量，我们也可以对“函数“进行赋值（重赋值）。当然，我们为了防止这样的情况，也可以这样：
 <scripttype="text/javascript">

 functionHello() {

 alert("Hello");

 }

 Hello();

 </script>

 <scripttype="text/javascript">

 functionHello() {

 alert("Hello World");

 }

 Hello();

 </script>

这样，程序被分成了两段，JS引擎也就不会把他们放到一起了。
Javascript学习笔记3——作用域
每个写过程序的人都不会对作用域这个概念陌生，那在这篇文章中就来谈下Javascript的作用域。
在Javascript，全局环境本身就一个对象。在浏览器宿主中这个对象是window，而当Javascript用于其它非浏览器的宿主，如嵌入式的环境中，可能会是其它的对象。
在这里也纠正一个观念，有很多人都认为Javascript只在浏览器中使用，其实Javascript也能在很多非Web情况下使用，据介绍Javascript在一些基于嵌入式的应用领域表现得也很出色，当然这些我也只是听过传说而已。
言归正传，当我们写下：var i=1时，其实就是声明了一个window作用域的一个变量。
而当我们写下i=1时，是声明了一个window的属性。
看这样一段代码：
 <scripttype="text/javascript">

 vara = "hello";

 b = "world";

 Test();

 functionTest() {

 alert(a + " "+ b);

 vara = "welcome";

 b = "china";

 alert(a + " "+ b);

 }

 alert(a + " "+ b);

 </script>

这段代码分别输出的结果是：undefined world，welcome china, hello china.
我们来分别解释：
在上文中，我们说过，在Javascript预编译时，会把所有var变量创建，默认值为undefined，我们在这里可以举一个例子：
我们可以写这样一段代码：
 <scripttype="text/javascript">

 alert(a);

 alert(b);

 vara = "111";

 b = "111";

 </script>

当我们执行运行这段脚本时，可以发现，首先弹出undefined，然后回提示脚本错误，提示b不存在。由此就可以表明，a在预编译的过程中就已经被创建并且初始化为undefined，而b却只能在实际运行时按顺序去解释。其实在预编译后的Javascript代码可以近乎理解如下：
 <scripttype="text/javascript">

 vara = undefined;

 alert(a);

 alert(b);

 a = "111";

 b = "111";

 </script>

接下来我们可以谈一下函数的作用域问题，每当代码运行进入一个函数时，Javascript引擎就会自动创建一个新的作用域，然后把这个新作用域作为当前作用域的子作用域，然后把当前的代码作用域切换到这个新作用域。当代码退出函数时，这个作用域销毁，把代码作用域交还给他的父作用域。
好，准备工作差不多了，接下来我们就来解释第一个问题：问什么会输出undefined world。
首先代码进行在预编译，当进入 Test方法时，开启一个新作用域，然后把全局作用域作为他的父作用域。然后对Test内的方法进行预编译，和上面的代码一样，Test方法被预编译后方法体大致如下：
functionTest() {

 vara = undefined;

 alert(a + " "+ b);

 vara = "welcome";

 b = "china";

 alert(a + " "+ b);

}

当然，在当前作用域下无法找到b，于是他就会到他的父作用域下，也就是全局作用域找到了b=“world”。于是也就产生了这样的结果。
第二次弹出welcome china，没什么好说的。
第三次，弹出hello china。我们可以这样理解，var a 只是 方法Test的一个局部变量，而b由于事先未声明，因此他会去父作用域中去找到对应的定义。
好，接下来，我们再看一下这个方法的若干个变体。
 <scripttype="text/javascript">

 vara = "hello";

 b = "world";

 Test();

 functionTest() {

 alert(a + " "+ b);

 a = "welcome";

 b = "china";

 alert(a + " "+ b);

 }

 alert(a + " "+ b);

 </script>

首先，我们将方法体内的var a改成a，我们先不看答案，直接来分析，首先，在预编译阶段，方法体内几乎没有任何改变，因此此时a和b一样，都要去他们的父作用域中去寻找，因此第一次出的结果应该是hello world，第二次没什么说的：welcome china，第三次由于a和b在本作用域内都没有事先定义，因此都是再改变父作用域内的值，因此应该输出welcome china.
我们继续：
 <scripttype="text/javascript">

 vara = "hello";

 b = "world";

 Test();

 functionTest() {

 alert(a + " "+ b);

 vara = "welcome";

 varb = "china";

 alert(a + " "+ b);

 }

 alert(a + " "+ b);

 </script>

和上面的分析一样，应该输出undefined undefined，welcome china，hello world.
继续：
 <scripttype="text/javascript">

 a = "hello";

 b = "world";

 Test();

 functionTest() {

 alert(a + " "+ b);

 vara = "welcome";

 b = "china";

 alert(a + " "+ b);

 }

 alert(a + " "+ b);

 </script>

应该是undefined world,welcome china,hello china.
经试验，都没问题， 不知道你明白了么？
因此我们可以得出，每个变量在找不到自己的定义时，都会沿着作用链向上寻找，这样就很可能会出现未预知的错误，给排错添加了很多困难。更麻烦的是，还可能会对父作用域上的变量值进行修改，因此我们在声明变量时应该尽量加上var，尽管Javascript并不强迫我们这样做。
Javascript学习笔记4——Eval函数
在初学JS的时候就知道这个函数，却一直没有了解过他的用途，也一直都是睁一只眼闭一只眼，这次来深入地了解一下这个函数的作用。
eval的作用其实很简单，就是把一段字符串传递给JS解释器，由Javascript解释器将这段字符串解释成Javascript代码，并且执行他。
举个最简单的例子：
 <scripttype="text/javascript">

 eval("alert(1+1)");

 </script>

很简单，把字符串解释成JS代码并执行，弹出2。
当然，上面的例子只是个玩具，在实际中没有人会傻到这么用。我想大家最基本的使用eval函数都是应该在DOM中，例如我们有div1,div2,div3，那么在document.getElementByID时我们的ID没有办法去得到，那么最简单的办法就是在for循环中，使用eval来拼接这么一段程序。例如这样：
 <scripttype="text/javascript">

 for(varloop = 1; loop < 10; loop++) {

 eval('document.getElementById("div"+loop).innerHTML="123"');

 }

 </script>

最基本的用法说完，相信大家还是对这个函数意犹未尽，如果这个函数只有这么点用法，那就太无聊了。那我们就一点点来剖下一下eval()函数。
我们就先从eval的作用域说起，先看这样一段函数：
 <scripttype="text/javascript">

 eval("var i=3");

 alert(i);

 </script>

代码很简单，结果可以弹出3。接下来再对比这段代码：
 <scripttype="text/javascript">

 vartest = function() {

 eval("var i=3");

 alert(i);

 }

 test();

 alert(i);

 </script>

结果是首先弹出3，然后是undefined。
那么说明：eval()函数动态执行的代码并不会创建新的作用域，其代码就是在当前的作用域执行的。因此也就是说，eval()函数也完全可以使用当前作用域的this,argument等对象。
在IE中，支持这样一种和eval()非常类似的函数叫做：execScript()。我们可以来写段简单的代码。
 <scripttype="text/javascript">

 vartest = function() {

 execScript("var i=3");

 alert(i);

 }

 test();

 alert(i);

 </script>

结果弹出了2个3，这也就看出了execScript函数的特点，首先他和eval相类似，都能将字符串解释成JS代码并且执行，但是他的作用域不是当前作用域，而是全局作用域。当我们把上面的代码放到Firefox和谷歌浏览器上去试试：发现在Firefox上execScript上代码是无效的，那么也说明一个问题，execScript代码的浏览器兼容性是有问题的。
那么就引申出这样一个问题，我们如何能把这两个函数的“优点”给汇总到一起呢，也就是说，全局+浏览器兼容性。上网搜了下，自己给汇总了一下，大概是这样：
 <scripttype="text/javascript">

 varStrongEval = function(code) {

 if(window.navigator.userAgent.indexOf("MSIE") >= 1) {

 execScript(code);

 }

 if(window.navigator.userAgent.indexOf("Firefox") >= 1) {

 window.eval(code);

 }

 else{

 execScript(code);

 }

 };

 varTest = function() {

 StrongEval("var i=3");

 }

 Test();

 alert(i);

 </script>

这样就可以完美地兼容FF和IE了，其本质代码就在于在FF中eval和window.eval并不等效，这是个很奇妙的事。
另外，我们还可以用eval+with实现一些奇淫技巧。
我们在一般意义上可以写出这样的代码：
varobj = function() {

 this.a = 1;

 this.b = 2;

 this.c = 5;

 this.fun = function() {

 this.c = this.a + this.b;

 }

};

varo = newobj();

o.fun();

alert(o.c);

或者是这样：
varobj = {

 a: 1,

 b: 2,

 c: 5,

 fun: function() {

 this.c = this.a + this.b;

 }

}

再或者是这样：
varobj = function() {

 this.a = 1;

 this.b = 2;

 this.c = 5;

};

obj.prototype.fun = function() {

 this.c = this.a + this.b;

}

varo = newobj();

o.fun();

alert(o.c);

无论怎么样，你是不是对这样的this感觉厌烦了呢？那就让我们采取个很另类的办法吧，让至少在感官上可能会舒服一点。
 <scripttype="text/javascript">

 varfuntemp = function() {

 c = a + b;

 }

 varobj = {

 a: 1,

 b: 2,

 c: 5

 };

 varfun;

 with(obj) {

 eval("fun = "+ funtemp);

 }

 fun();

 alert(obj.c);

 </script>

这个很勉强，那么好，我们不讨论什么看着舒服不舒服。我们来讨论这样一种情况。
 <script>

 varDBCommon = function() {

 alert("1."); CreateConnection();

 alert("2."); OpenConnection();

 alert("3."); CreateCommand();

 alert("4."); ExcuteCommand();

 alert("5."); CloseConnection();

 }

 varSQLServerCommon = {

 CreateConnection: function() { alert("建立SQL Server连接"); },

 OpenConnection: function() { alert("打开SQL Server连接"); },

 CreateCommand: function() { alert("创建¨SQL Server命令"); },

 ExcuteCommand: function() { alert("执行DSQL Server命令"); },

 CloseConnection: function() { alert("关闭SQL Server连接"); }

 };

 varOracleCommon = {

 CreateConnection: function() { alert("建立￠Oracle连接"); },

 OpenConnection: function() { alert("打开aOracle连接"); },

 CreateCommand: function() { alert("创建¨Oracle命令"); },

 ExcuteCommand: function() { alert("执行DOracle命令"); },

 CloseConnection: function() { alert("关闭?Oracle连接"); }

 };

 with(SQLServerCommon) {

 eval("forSQLServer="+ DBCommon);

 }

 with(OracleCommon) {

 eval("forOracle="+ DBCommon);

 }

 forSQLServer();

 forOracle();

 </script>

我们又是否可以把这个看成是一个简陋的模板方法模式呢？呵呵。我们也可以把这个称为利用eval和with配合改变函数的上下文。
不过话又说回来，Eval在一般的情况中是很少被用到的，我们是完全可以避免来使用它的。
Javascript学习笔记5——类和对象
首先，不得不说，我无法达到抛开类和对象的概念来看Javascript的境界，对于Javascript是否是面向对象的说法有很多，不过我最认同的还是Javascript是一种“基于prototype的面向对象语言”。
面向对象语言三大特点：继承，多态，封装，这三点虽然Javascript没有提供天然的语法实现，但是我们都可以通过prototype等技巧来实现，因此这种说法似乎不过分。
在Javascript中，构造对象有三种方式：
1. 首先，我们要明确一个概念，Javascript是一种弱类型的语言，一方面体现在Javascript的变量，返回类型都是没有强类型约束的，另一方面，Javascript可以为对象任意添加属性和方法。根据这个，我们可以写出这样的代码：
 <scripttype="text/javascript">

 varperson = {};

 person.name = "飞林沙";

 person.age = 21;

 person.Introduce = function() {

 alert("My name is "+ this.name + ".I'm "+ this.age);

 };

 person.Introduce();

 </script>

这里的person就是我们构造出的一个对象。
2. 我们也可以利用JSON的形式来构造一个对象。
 <scripttype="text/javascript">

 varperson = {

 name: "飞林沙",

 age: 21,

 Introduce: function() { alert("My name is "+ this.name + ".I'm "+ this.age); }

 };

 person.Introduce();

 </script>

这个是不是很像我们在C#3.0里提出的匿名对象呢？
protected voidPage_Load(objectsender, EventArgse)

{

 varperson = new

 {

 name = "飞林沙",

 age = 21

 };

 Response.Write("My name is "+ person.name + ".I'm "+ person.age);

}

不同的是在Javascript中，函数是一种类型，所以可以赋给某个变量，但是C#不可以。
但是上面两种方法我们看到，我们都是单独定义了一个对象。接下来让我们把他们抽象出来成为一个类。
 <scripttype="text/javascript">

 varPerson = function() {

 this.name = "飞林沙";

 this.age = 21;

 this.Introduce = function() {

 alert("My name is "+ this.name + ".I'm "+ this.age);

 };

 };

 varperson = newPerson();

 person.Introduce();

 </script>

可是在这里，我们看到，属性都已经被写死了，我们根本没办法为每个对象单独订制，解决办法很简单：
 <scripttype="text/javascript">

 varPerson = function(name, age) {

 this.name = name;

 this.age = age;

 this.Introduce = function() {

 alert("My name is "+ this.name + ".I'm "+ this.age);

 };

 };

 varperson = newPerson("飞林沙", 21);

 person.Introduce();

 </script>

好，我们来对比一下第二种和第三种写法，两者是等效的。在第二种写法中，实际上是构建了一个JSON对象，而我们又知道JSON本质上其实就是一个键值对，那么我们是否也可以用同样的方式来理解一个对象呢？
我们来写出这样的测试代码试试：
 <scripttype="text/javascript">

 varPerson = function(name, age) {

 this.name = name;

 this.age = age;

 this.Introduce = function() {

 alert("My name is "+ name + ".I'm "+ age);

 };

 };

 varperson = newPerson("飞林沙", 21);

 for(varp inperson) {

 alert(p);

 }

 alert(person["name"]);

 </script>

这样的代码没偶任何问题，首先用遍历的方式来找到person所有的key(属性和方法名)。然后我们用索引的方式来访问person对象的name属性。
这些都没有问题，可是我们是不是看到了一个引申的问题，从传统面向对象的语言来看，name和age应该属于私有变量，那么这样用person简简单单的访问，是不是破坏了封装性呢？
还记得我们在前文中说过的么？var的叫变量，没有var的叫属性。那么我们如果讲代码改成这个样子。
 <scripttype="text/javascript">

 varPerson = function(name, age) {

 varname = name;

 varage = age;

 this.GetName = function() {

 returnname;

 }

 this.GetAge = function() {

 returnage;

 }

 this.Introduce = function() {

 alert("My name is "+ name + ".I'm "+ age);

 };

 };

 varperson = newPerson("飞é林?沙3", 21);

 alert(person["name"]);

 alert(person.GetName());

 </script>

这样就可以封装得很好了，这也是在Javascript中的封装方式。
好，关于Javascript的类和对象就说到这，但是这里面仍然有一些问题。我们会在下文中提及。
Javascript学习笔记6——prototype的提出
首先我们继续上文的代码，我们来把这段代码延伸一下：
 <scripttype="text/javascript">

 varPerson = function(name, age) {

 this.name = name;

 this.age = age;

 this.Introduce = function() {

 alert("My name is "+ this.name + ".I'm "+ this.age);

 };

 };

 varperson1 = newPerson("飞林沙", 21);

 varperson2 = newPerson("kym", 26);

 alert(person1.Introduce == person2.Introduce);

 </script>

结果弹出false。也就是说，这两个对象的方法是不同的方法。那么我们知道，在C#中，每个对象会维护着一个方法表，可是方法表应该指向同一块地址。如果是这样的话，那当我们声明了100个对象，是不是要建立100个对象拷贝，对空间是不是一个很大的浪费呢？
于是我们就想了这样的解决办法，用prototype：
 <scripttype="text/javascript">

 varPerson = function(name, age) {

 this.name = name;

 this.age = age;

 };

 Person.prototype.Introduce = function() {

 alert("My name is "+ this.name + ".I'm "+ this.age);

 }

 varperson1 = newPerson("飞林沙", 21);

 varperson2 = newPerson("kym", 26);

 alert(person1.Introduce == person2.Introduce);

 </script>

这样就可以了。所以你还会再说是否用prototype都是一样的么？其实我以前也是这么理解的，在这次偶然的试验中看到了这个问题。
Javascript学习笔记7——原型链的原理
说到prototype，就不得不先说下new的过程。
我们先看看这样一段代码：
 <scripttype="text/javascript">
 varPerson = function() { };
 varp = newPerson();
 </script>

很简单的一段代码，我们来看看这个new究竟做了什么？我们可以把new的过程拆分成以下三步：
<1> var p={}; 也就是说，初始化一个对象p。
<2> p.__proto__=Person.prototype;
<3> Person.call(p);也就是说构造p，也可以称之为初始化p。
关键在于第二步，我们来证明一下：
 <scripttype="text/javascript">
 varPerson = function() { };
 varp = newPerson();
 alert(p.__proto__ === Person.prototype);
 </script>

这段代码会返回true。说明我们步骤2的正确。
那么__proto__是什么？我们在这里简单地说下。每个对象都会在其内部初始化一个属性，就是__proto__，当我们访问一个对象的属性时，如果这个对象内部不存在这个属性，那么他就会去__proto__里找这个属性，这个__proto__又会有自己的__proto__，于是就这样一直找下去，也就是我们平时所说的原型链的概念。
按照标准，__proto__是不对外公开的，也就是说是个私有属性，但是Firefox的引擎将他暴露了出来成为了一个共有的属性，我们可以对外访问和设置。
好，概念说清了，让我们看一下下面这些代码：
 <scripttype="text/javascript">
 varPerson = function() { };
 Person.prototype.Say = function() {
 alert("Person say");
 }
 varp = newPerson();
 p.Say();
 </script>

这段代码很简单，相信每个人都这样写过，那就让我们看下为什么p可以访问Person的Say。
首先var p=new Person()；可以得出p.__proto__=Person.prototype。那么当我们调用p.Say()时，首先p中没有Say这个属性，于是，他就需要到他的__proto__中去找，也就是Person.prototype，而我们在上面定义了Person.prototype.Say=function(){}; 于是，就找到了这个方法。
好，接下来，让我们看个更复杂的。
 <scripttype="text/javascript">
 varPerson = function() { };
 Person.prototype.Say = function() {
 alert("Person say");
 }
 Person.prototype.Salary = 50000;
 varProgrammer = function() { };
 Programmer.prototype = newPerson();
 Programmer.prototype.WriteCode = function() {
 alert("programmer writes code");
 };
 Programmer.prototype.Salary = 500;
 varp = newProgrammer();
 p.Say();
 p.WriteCode();
 alert(p.Salary);
 </script>

我们来做这样的推导：
var p=new Programmer()可以得出p.__proto__=Programmer.prototype;
而在上面我们指定了Programmer.prototype=new Person();我们来这样拆分，var p1=new Person();Programmer.prototype=p1;那么:
p1.__proto__=Person.prototype;
Programmer.prototype.__proto__=Person.prototype;
由根据上面得到p.__proto__=Programmer.prototype。可以得到p.__proto__.__proto__=Person.prototype。
好，算清楚了之后我们来看上面的结果,p.Say()。由于p没有Say这个属性，于是去p.__proto__，也就是Programmer.prototype，也就是p1中去找，由于p1中也没有Say，那就去p.__proto__.__proto__，也就是Person.prototype中去找，于是就找到了alert(“Person say”)的方法。
其余的也都是同样的道理。
这也就是原型链的实现原理。
最后，其实prototype只是一个假象，他在实现原型链中只是起到了一个辅助作用，换句话说，他只是在new的时候有着一定的价值，而原型链的本质，其实在于__proto__！
二. 实战篇
Javascript学习笔记8——用JSON做原型
在Javascript学习笔记5——类和对象中，我简单地提到了利用JSON去构造一个对象。代码如下：
 <scripttype="text/javascript">

 varPeople = {

 name: "kym",

 age: 21,

 SayHello: function() {

 alert("Hello,My name is "+ this.name + ".I am "+ this.age);

 }

 }

 alert(People.name);

 People.SayHello();

 </script>

但是我们是不能重用这个对象的，我们如何把这个对象作为原型的呢？
首先，在一个JSON对象有一个构造方法是不可能的了，那么我们就做一个简单的“工厂”吧，写一个方法来专门负责创建。
 <scripttype="text/javascript">

 varPeople = {

 Create: function(name, age) {

 this.name = name;

 this.age = age;

 },

 SayHello: function() {

 alert("Hello,My name is "+ this.name + ".I am "+ this.age);

 }

 }

 People.Create("kym", 21);

 People.SayHello();

 </script>

但是通过这个方法我们却发现，我们没有办法用People作为原型，让我们回顾一下：Javascript学习笔记7——原型链的原理 这篇文章，我们想一下这个过程：
var p=new People();==>p.__proto__=People.prototype。于是当我们p.SayHello()的时候就会去People.prototype中去找，结果什么都找不到。
如果可以People.prototype.SayHello=function(){}就可以解决这个问题。但是我们知道，只有function才可以有prototype。
那么我们想想之前的推导公式，怎么样能让p.SayHello()呢？如果可以p.__proto__=People就好了。那么我们想个办法：
既然在new的时候，某个对象的__proto__只能等于某个函数的prototype，我们设置一个函数X，令p.__proto__=X.prototype，我们再令X.prototype=People。这样的关系是这样：
 <scripttype="text/javascript">

 varPeople = {

 Create: function(name, age) {

 this.name = name;

 this.age = age;

 },

 SayHello: function() {

 alert("Hello,My name is "+ this.name + ".I am "+ this.age);

 }

 };

 varX = function() { };

 X.prototype = People;

 varp = newX();

 p.Create("kym", 21);

 p.SayHello();

 </script>

这样就相当于用X做了一个中间变量，使得我们可以访问JSON对象的内部属性。但是这样是不是不太优雅呢？我们每次创建一个对象时，都需要来写这样一个辅助的函数。那好，我们就把这个过程封装起来：
varFactory = {

 CreatePeople : function(className,name,age) {

 vartemp = function() {

 className.Create(name, age);

 };

 temp.prototype = className;

 varresult = newtemp();

 returnresult;

 }

};

varpeople = Factory.CreatePeople(People,"kym",21);

people.SayHello();

但是这样也有一个缺点，就是每次我增加一个类，就需要向Factory里注册一个新方法，这样是很麻烦的，我在很久以前的 玩转方法:call和apply 中说过关于call和apply的区别，因为这里的参数不固定，我们不可能一一列举，因此我们在这里可以用apply来改善这个方法：
 <scripttype="text/javascript">

 varPeople = {

 Create: function(name, age) {

 this.name = name;

 this.age = age;

 },

 SayHello: function() {

 alert("Hello,My name is "+ this.name + ".I am "+ this.age);

 }

 };

 varFactory = {

 Create: function(className, params) {

 vartemp = function() {

 className.Create.apply(this, params);

 };

 temp.prototype = className;

 varresult = newtemp();

 returnresult;

 }

 };

 varpeople = Factory.Create(People,["kym",21]);

 people.SayHello();

 </script>

这样，一个完整的创建类就诞生了！那么我们每次创建“类”时就都可以用JSON来做了，然后用户每次都统一来调用Factory.Create()就可以了！
Javascript学习笔记9——prototype封装继承
在上文中，我利用prototype的原理做了一个封装的New，然后我就想到，我是否可以用prototype的原理进一步封装面向对象的一些基本特征呢？比如继承。
好，那就让我们一步步打造，首先让我们来看下继承原本的写法：
 <script>

 varPerson = function(name, age) {

 this.name = name;

 this.age = age;

 }

 Person.prototype.SayHello = function() {

 alert(this.name + ","+ this.age);

 };

 varProgrammer = function(name, age, salary) {

 Person.call(this, name, age);

 this.salary = salary;

 };

 Programmer.prototype = newPerson();

 varpro = newProgrammer("kym", 21, 500);

 pro.SayHello();

 </script>

我们看到，在实际上，继承的根本就在于这一步Programmer.prototype=new Person()。也就是说把Person加到原型链上。这一点在Javascript学习笔记7——原型链的原理 已经有过比较详尽的解释。
那也就是说，我们实现的关键就在于原型链的打造。
在上文中，我们用JSON来打造了一个原型，其原型链是p.__proto__=Person。那么我们希望在这个上封装继承，那么原型链应该是p.__proto__.__proto__=SuperClass，也就是说Person.__proto__=SuperClass。但是按照我们上面代码的继承方法，原型链关系是Person.__proto__=SuperClass.prototype。
这个和我们在上文中一样，我们的办法就是借助一个辅助函数，将原来的函数内的属性赋给X，然后令X.prototype=SuperClass即可，也就是说我们将子原型进行一个封装。
好，就按照这个思路，我们来实现利用原型链的继承关系的封装。
 <script>

 varFactory = {

 Create: function(className, params) {

 vartemp = function() {

 className.Create.apply(this, params);

 };

 temp.prototype = className;

 varresult = newtemp();

 returnresult;

 },

 CreateBaseClass: function(baseClass, subClass) {

 vartemp = function() {

 for(varmember insubClass) {

 this[member] = subClass[member];

 }

 };

 temp.prototype = baseClass;

 return newtemp();

 }

 };

 varPeople = {

 Create: function(name, age) {

 this.name = name;

 this.age = age;

 },

 SayHello: function() {

 alert("Hello,My name is "+ this.name + ".I am "+ this.age);

 }

 };

 varTemp = {

 Create: function(name, age, salary) {

 People.Create.call(this, name, age);

 this.salary = salary;

 },

 Introduce: function() {

 alert(this.name + "$"+ this.age + "$"+ this.salary);

 }

 };

 varProgrammer = Factory.CreateBaseClass(People, Temp);

 varpro = Factory.Create(Programmer, ["kym", 21, 500]);

 pro.SayHello();

 </script>

这样就完成了我们对继承关系的封装。当然，我们也可以不单独写一个变量：
varProgrammer = Factory.CreateBaseClass(People,

{

 Create: function(name, age, salary) {

 People.Create.call(this, name, age);

 this.salary = salary;

 },

 Introduce: function() {

 alert(this.name + "$"+ this.age + "$"+ this.salary);

 }

});

当然，这全凭个人爱好了，个人认为第一种办法相对更清晰一些，但是第二种办法则更优雅。
三. DOM相关

Javascript学习笔记10——网页运行原理
当我们打开一个网页的时候，浏览器会首先创建一个窗口，这个窗口就是我所知道的window对象，也就是整个Javascript运行所依附的全局变量。
为了加载网页文档，当前窗口又需要创建一个Document对象，然后把打开的网页加载到Document下。网页就是在这个加载的过程中，一边加载一边呈现，所以我们当网速非常慢的时候可以看到，网页从上到下一点点地打开。
当我们用<script src=’’>引入其他的JS时，浏览器可能会派遣其他线程去下载，但是浏览器也会等待需要的JS文件下载完成，然后再有主线程按顺序加载JS其他的代码。在Web标准下，限制对同一个域名最多只允许使用两个线程可以同时加载内容，当然可以通过修改注册表来强迫Windows模块突破这一限制。
同时，许多网站会把js放到不同的子域名下，这样就可以使浏览器开启更多的线程并行加载这些资源，从而更加充分地利用网络带宽。
当整个页面都加载结束后，浏览器开始触发window对象或者body对象的onload事件，其实window对象和body对象的load事件是想通的，这也就意味着两个事件只能有一个起作用。当然，在常规意义上，也没有同时设置两者的需求。
到此结束，然后JS引擎就暂停工作，等待着下一次的触发。因此我们可以说：“JS总是被动触发的”。
Javascript学习笔记11——包装DOM对象
我们在日常的应用中，使用Javascript大多数时间都是在用DOM ，以致于很多人都有一种看法就是DOM==JS，虽然这种看法是错误的，但是也可以说明DOM的重要性。
这就导致了我们在写JS的时候，首先会考虑的是这个方法在页面上会产生什么样的变化之类的问题，用架构的思想来说：我们可以说这样把用户界面和业务逻辑掺杂到了一起。我们也知道，这样对于一个稍大的项目来说，满脑袋都是DIV，都是CSS是做不好东西的。
那么怎么办？我们还是用对象的角度，从逻辑上来考虑这个问题，让我们忘记那些DOM对象。
我们来举一个例子吧：

对于某个回复，可能是回复本贴，也可能是举报。那么暂时让我们忘记那些DOM对象，让我们想清楚逻辑：
点击“回复本贴”时，隐藏举报窗口，打开回复窗口。
点击“举报本贴”时，隐藏回复窗口，打开举报窗口。
OK，也就是说整个逻辑包含两个对象，一个是举报窗口对象，一个是回复窗口对象，每个对象有两个方法，一个是打开，一个是隐藏。由于某个页面可能会有很多这样的对象，每个对象都应该是被创建的一个原型，于是就应该有这样的代码：
<scripttype="text/javascript">

 varComment = function(x, y) {

 varx = x;

 vary = y;

 };

 Comment.prototype.Create = function() {

 };

 Comment.prototype.Hide = function() {

 };

 varReport = function(x, y) {

 varx = x;

 vary = y;

 };

 Report.prototype.Create = function() {

 };

 Report.prototype.Hide = function() {

 };

</script>

至于逻辑就是：
buttonCommert.onclick = function() {

 GetReport(“id”).Hide();

 HideOthers(); // 关闭本页面其它的回复窗口

 varc = newComment("1","1");

 c.Create();

}

举报按钮也近似如此。
好了大致逻辑如此，我们需要的只是实现原型中的创建和隐藏方法。
varComment = function(x, y) {

 varx = x;

 vary = y;

 varConfirmComment = function() {

 //Ajax提á交?评à论?

 };

};

Comment.prototype.Create = function() {

 varcom = document.createElement("div");

 document.getElementById("XXXX").appendChild(com);

 com.x = x;

 com.y = y;

 com.style.left = "XXpx";

 com.style.top = "YYpx";

 vartxt = document.createElement("input");

 txt.nodeType = "text";

 com.appendChild(txt);

 varbtn = document.createElement("input");

 btn.nodeType = "button";

 btn.onclick = ConfirmComment();

 com.appendChild(btn);

};

以上皆为伪代码，只是提供一种封装DOM的思路。
在工程中，将DOM对象包装成符合我们自己业务逻辑的Javascript对象是一种非常好的做法，这也是企业JS库形成的一个过程。
说句极端话，如果足够成熟后，也许页面中写JS看不到DOM，而皆为包装好的JS对象，笑谈尔….
Javascript学习笔记12——Ajax入门
Ajax:Asynchronous Javascript And XML。写个简单的例子：
<body>
 <formid="form1"runat="server">
 <div>
 <asp:LabelID="LabelTime"runat="server"></asp:Label>
 </div>
 </form>
 <scripttype="text/javascript">
 if(!window.XMLHttpRequest) {
 window.XMLHttpRequest = function() {
 return newActiveXObject("Microsoft.XMLHTTP");
 };
 }
 functionUpdateClock() {
 varrequest = newXMLHttpRequest();
 request.open("post", "TimeTest.aspx", false);
 request.send("");
 document.getElementById("LabelTime").innerText = request.responseText;
 }
 setInterval(UpdateClock, 1000);

 </script>
</body>

而在另一个页面写下当前时间，这样就形成了一个钟表。
代码很简单，就是操纵一个XMLHttpRequest对象来获取服务器时间，然后更新时间。上面的代码在与服务器交互时，并没有页面整体刷新，而是局部刷新。
但是上面的代码在request.open时，最后一个参数为false，表示发出的XMLHttpRequest是同步的，由于Javascript是单线程的，所以在等待请求的过程中，线程会被阻塞，如果请求时间过长，浏览器会停止响应。
虽然Javascript是单线程的，但是XMLHttpRequest具备异步处理请求的能力。代码如下：
<body>
 <formid="form1"runat="server">
 <div>
 <asp:LabelID="LabelTime"runat="server"></asp:Label>
 </div>
 </form>
 <scripttype="text/javascript">
 if(!window.XMLHttpRequest) {
 window.XMLHttpRequest = function() {
 return newActiveXObject("Microsoft.XMLHTTP");
 };
 }

 functionAsynRequest() {
 varrequest = newXMLHttpRequest();
 request.open("post", "TimeTest.aspx", true);
 request.onreadystatechange = function() {
 if(request.readyState === 4) {
 UpdateClock(request.responseText);
 }
 };
 request.send("");
 }
 functionUpdateClock(time) {
 document.getElementById("LabelTime").innerText = time;
 }
 setInterval(AsynRequest, 1000);

 </script>
</body>

哎，没有智能提示的日子真不好过。
Javascript学习笔记13——关于响应事件
具体的事情记不清了，某一天下班后听到两个同事在说关于关于事件的问题。
这里简单说下：
<inputtype="button"runat="server" value="Click Me"id="ButtonTest" />

HYPERLINK "http://11011.net/software/vspaste"很普通的一个按钮，我们要为其添加点击事件，有两种方法：
A.
 <inputtype="button"runat="server"onclick="Alert()"value="Click Me"id="ButtonTest" />
 <scripttype="text/javascript">
 functionAlert() {
 alert("Click Me");
 }
 </script>

B.

 <inputtype="button"runat="server"value="Click Me"id="ButtonTest" />
 <scripttype="text/javascript">
 document.getElementById("ButtonTest").onclick = function() {
 alert("Click Me");
 }
 </script>

我们称A方法为静态绑定，B方法为动态绑定。我们来看A方法，他近乎可等于这样的效果：
 <inputtype="button"runat="server"onclick="Alert()"value="Click Me"id="ButtonTest" />
 <scripttype="text/javascript">
 document.getElementById("ButtonTest").onclick = function() {
 Alert();
 }
 </script>

也就是说，当我们静态绑定一个事件的时候，实际上是系统默认为我们做了一个匿名函数，然后把我们的方法体包于其中。由于这样，就涉及到了this的问题。
我们来看这样一段代码，这也是我在公司初学JS的时候，公司的JS小牛抛给我的问题。
 <inputtype="button"runat="server"onclick="Alert1()"value="Test1"id="ButtonTest1" />
 <inputtype="button"runat="server"onclick="Alert2(this)"value="Test2"id="ButtonTest2" />
 <scripttype="text/javascript">
 functionAlert1() {
 alert(this.value);
 }
 functionAlert2(obj) {
 alert(obj.value);
 }
 </script>

当试验这样一段代码时，便会发现第一个按钮会弹出”undefined”，第二个按钮弹出”Test2”。原因就是如我上面所说，在按钮一中，方法等于声明了一个匿名函数，然后讲Alert1()闭包于其中，也就是说，Alert1()是无法找到其调用者的，所以这时，他会去找window对象的value属性，结果发现未定义，我们可以这样证明：
<inputtype="button"runat="server"onclick="Alert1()"value="Test1"id="ButtonTest1" />
 <inputtype="button"runat="server"onclick="Alert2(this)"value="Test2"id="ButtonTest2" />
 <scripttype="text/javascript">
 value = "window";
 functionAlert1() {
 alert(this.value);
 }
 functionAlert2(obj) {
 alert(obj.value);
 }
 </script>

Javascript学习笔记(14)
1. Javascript的数值类型
《Javascript语言精粹》中有这样一句话：Javascript只有单一的数字类型。
在我看来，这句话说的并不准确，应该说，Javascript在声明时，只有单一的数据类型。或者说，Javascript的所有数值类型都被存储成同一种格式，就是64位的浮点数类型。
这样说比较准确。
 <scripttype="text/javascript">

 vari = 1.2;

 alert(typeof(i));

 </script>

这样无论把i换成整数还是浮点数，都会得到Number的结果。
但是我说这样不准确的意思是说，在Javascript还提供了一些方法来作为数值之间的类型转换。比如：
 <scripttype="text/javascript">

 vari = 1.2;

 alert(Math.floor(i));

 alert(parseInt(i));

 </script>

2. Javascript没有连接器
在我之前的C语言文章中，有一节着重介绍了连接器的作用，但是在Javascript中，是没有连接器的，那么多个编译单元之间如何组合到一起呢？答案就是Javascript只是“粗鲁“地将他们抛入到同一个全局的命名空间当中。
3. Javascript的默认值技巧
其实这只是一个小技巧，相信大部分人都用过，看个简单的小例子：
 <scripttype="text/javascript">

 varperson = { name: "kym", age: 21 };

 alert(person.love || "reading");

 </script>

这就是对person.love赋默认值的方法。
4. Javascript判断自身属性
我们知道对象其实本质上来说就是一个键值对，那么我们就可以用 for来遍历 Javascript中的属性。写出这样的代码:
 <scripttype="text/javascript">

 varperson = function(name, age) {

 this.name = name;

 this.age = age;

 };

 person.prototype.Say = function() {

 alert("Hi");

 }

 varstudent = function(name, age, teacher) {

 person(name, age);

 this.teacher = teacher;

 };

 student.prototype = newperson(this.name,this.age);

 student.prototype.SayHello = function() {

 alert("Hello");

 }

 vars = newstudent("kym", 21, "sss");

 for(varpro ins) {

 alert(pro);

 }

 </script>

但是我们可以发现，其实他得到的不只只是他自身的属性，还有原型链上的属性，那么我们就要用hasownproperty来得到：
 <scripttype="text/javascript">

 varperson = function(name, age) {

 this.name = name;

 this.age = age;

 };

 person.prototype.Say = function() {

 alert("Hi");

 }

 varstudent = function(name, age, teacher) {

 person(name, age);

 this.teacher = teacher;

 };

 student.prototype = newperson(this.name,this.age);

 student.prototype.SayHello = function() {

 alert("Hello");

 }

 vars = newstudent("kym", 21, "sss");

 for(varpro ins) {

 if(s.hasOwnProperty(pro)) {

 alert(pro);

 }

 }

 </script>

Javascript玩转继承(一)
最近一直在学Javascript，打算写一些文章，算做自己的学习心得吧，也可以算是学习笔记。没有系统的知识点，太基础的不想写，主要是写一些自己觉得有价值的地方。

今天写第一篇。

Javascript究竟是一门面向对象的语言，还是一门支持对象的语言，我想每个人都有着自己的看法。那些Javascript忠实的Fans一定讲Javascript是一门面向对象的语言，像《Javascript王者归来》一书中对Javascript的说法是基于原型的面向对象。我谈谈我个人的看法。面向对象的三个特征，继承，多态，封装，Javascript虽然实现起来不像Java,C#等面向对象的语言来得快，但是毕竟也有着一定的支持。因此说Javascript是面向对象的语言是有着一定道理的，但是从继承这个部分来谈，一系列的继承法，但是每个继承法都无法实现真正面向对象语言的威力，因此，说他面向对象有着一定的牵强。综上，我对Javascript的理解，更愿意把它叫做一种简化的面向对象，或者说"伪"面向对象（这个伪字绝无贬义）。

今天就从面向对象这个第一个特征：继承来谈。

什么是继承？这个我不想废话，有一只动物，有一个人，有一个女孩，这个就是一个最简单，也是典型的继承链。

在C#等面向对象中，很容易。

class Animal

{ }

class People:Animal

{ }

class Girl:People

{ }

那么在Javascript中，没有类，没有继承的提供实现，我们该怎么做呢？

对象伪装（构造继承法）

什么是对象伪装呢？我们可能叫做构造继承更容易理解一些。顾名思义，就是用构造函数来玩继承。其实就是说把父类的构造函数当成是一个普通的方法，放到子类的构造函数中去执行，这样的话，当构造对象的时候，子类的对象当然就可以构造父类的方法啦！

还是用上面的那个例子，代码如下：

function Animal()

{

 this.Run=function(){alert("I can run");};

}

function People(name)

{

//在这里就是传入了父类的构造方法，然后执行父类的构造方法，这个时候就//可以使用父类中的方法了。

 this.father=Animal;

 this.father();

 //记得要删除，否则在子类添加于父类相同名称的方法时，会修改到父类。

delete this.Father;

this.name=name;

 this.Say=function(){alert("My name is "+this.name);}

}

function Girl(name,age)

{

 this.father=People;

 this.father(name);

 delete this.father;

 this.age=age;

 this.Introduce=function(){alert("My name is "+this.name+".I am "+this.age);};

}

这样的话就实现了一个继承链，测试下：

var a=new Animal();

a.Run();

var p=new People("Windking");

p.Run();

p.Say();

var g=new Girl("Xuan",22);

g.Run();

g.Say();

g.Introduce();

结果如下：

a. [image: image2.png]A\ e

W

b. [image: image3.png]Windows Internet Expl..

A\ e

W

c.[image: image4.png]Windows Internet Expl.

‘ Wy s Widking

W

d.[image: image5.png]Windows Internet Expl.

A\ e

W

e. [image: image6.png]Windows Internet Expl.

‘ My s s

W

f. [image: image7.png]Windows Internet Expl.

‘ My s s am 22

W

测试成功！

我们来总结一下这段代码的关键，指定父类，声明父类对象，然后删除临时变量，您是否觉得有些麻烦呢？至少我是这么觉得的，一旦忘记了delete，还要承担父类被修改的风险，针对这个，我们对这个用call和apply来改进！

接着看代码，还是上面的例子（为了更加容易大家理解，需求改变一下，Animal有了名字）：

function Animal(name)

{

 this.Run=function(){alert("I can Run");};

}

function People(name)

{

 //使用call方法实现继承

this.father=Animal;

 this.father.call(this,name);

 this.name=name;

 this.SayName=function(){alert("My name is "+this.name;);};

}

function Girl(name,age)

{

 //使用apply方法来实现继承

 this.father=People;

 this.father.apply(this,new Array(name));

 this.age=age;

 this.Introduce=function(){alert("My name is "+this.name+".I am "+this.age);};

}

用一样的测试代码，发现测试一样成功。

如果是新手，可能看后面的这两段代码有些晕晕乎乎，什么是call,什么是apply呢？好，在玩转继承这个专题中，我加入一个增刊系列，如果对这个有不了解，可以看我的这个文章：《玩转方法:call和apply 》。

对象伪装，这只是一种实现继承的方式，在接下来的文章，我会继续写出其他的继承方式以及几种继承方式的优劣，欢迎继续关注。

Javascript玩转继承（二）
在《Javascript玩转继承(一)》中，我主要介绍了对象伪装来实现继承。我们在这里先来说一下这种方式的优缺点。

毋庸置疑，这种方式是比较容易理解的，在子类中调用父类的构造函数。另外，这种方法最大的一个优点就是说构造继承可以实现多继承，复习下这个代码：

function A()

{ }

function B()

{ }

function C()

{

 this.father=A;

 this.father();

 delete this.father;

 this.father=B;

 this.father();

 delete this.father;

}

但是这种方式也有着这样和那样的缺点：

熟悉面向对象的我们来看这样一段C#代码：

class Program
{
static void Main(string[] args)
{
B b=new B();
bool temp = (typeof(A)).IsInstanceOfType(b);
Console.WriteLine(temp);
}
}
class A
{
public A()
{
}
}
class B : A
{
public B()
{
}
}
结果呢？b当然是A的一个实例:
[image: image8.png]

然而我们对上面的那段使用构造继承的Javascript代码做这样的测试：

function A()

{ }

function B()

{ }

function C()

{

 this.father=A;

 this.father();

 delete this.father;

 this.father=B;

 this.father();

 delete this.father;

}

var c=new C();

alert(c instanceof A);

可是得到的结果却不是我们想象的那样：

[image: image9.png]Windows Internet Expl.

A e

W

其实很容易解释：构造继承只是通过了调用父类的构造方法复制的父类的属性，其他的什么搜没有做，所以很多资料中并不把这种继承方式称做继承。

看到缺点的同时也记住优点：支持多继承。

我们看C# 的继承，发现与这个继承有两个最典型的不同：C#不支持多继承，以及我上面提到的构造继承的缺点。于是就产生了一种新的继承方式，我们成为原型继承。

看到名字，可以大致理解，原型继承就是使用原型（prototype）的特性来实现继承的。这是在Javascript最流行的一种继承方式。如果对原型有不理解，请关注我的另一篇文章：《玩转原型——prototype》。

我们先来看代码，在这里，我借鉴《Javascript王者归来》中的一段代码：

function Point(dimension)

{

 this.dimension=dimension;

 this.Test=function(){

 alert("Success");

}

}

function Point2D(x,y)

{

 this.x=x;

 this.y=y;

}

Point2D.prototype=new Point(2);

var p=new Point2D(3,4);

p.Test();

[image: image10.png]Windows Internet Expl

A\ s

W

测试通过。说明Point2D已经继承了父类的方法，再看看instance。

alert(p instanceof Point);

[image: image11.png]Windows Internet Expl.

N

W

成功！好，我们来分析下原型继承：

原型继承的优点我不再多说，结构简单，容易理解，而且可以instance。但是他的缺点同样显著，还记得我上一篇关于Animal,People，Girl的例子么？我们用原型继承来实现下：

function Animal()

{

this.Run=function(){alert("I can run");};

}

function People(name)

{

this.Say=function(){alert("My name is "+this.name);}

}

People.prototype=new Animal();

function Girl(name,age)

{

this.age=age;

this.Introduce=function(){alert("My name is "+this.name+".I am "+this.age);};

}

Girl.prototype=new People(???);
大家注意看我红色加粗部分的那行代码，People是Girl的原型，那么我们在初始化People的时候就应该传入name参数，但是每个Girl的名字是不一样的，所以原型继承不使用的场合一：在原型继承阶段你不能确定用什么参数来初始化父类对象。场合二：很简单，每一个类只能有一个原型，那么也就是说，原型继承不能用于多继承。这是件好事，也是件坏事。因为：

在Java和C#等面向对象语言中，本来就不支持多继承，并且认为多继承是不符合面向对象的

无法实现多个接口了！

好了，今天就写到这，总结下，Prototype继承解决了构造继承的一些问题，又引入了一些新的问题。总体来说，原型继承是应用最广泛的继承方式，也是Javascript文法中真正意思上实现继承的方式！

Javascript玩转继承（三）
在前两篇文章中，介绍了构造继承和原型继承。今天把剩下的两种写完，这两种的应用相对于前两种来说应用很少，因此我把他们称为是非主流继承方式。

首先，我们来看非主流继承一：实例继承法。

我也不说那么多废话了，既然是非主流继承，就一定不常用，既然不常用还存在，那就只有一个因素，他用于特定的场合。实例继承法，就主要用于核心对象的继承，也是目前为止唯一能够解决核心对象继承的方式。

核心对象的继承拥有一定的价值，比如说Error对象，我们公司可能要自己实现一个Error 类来简化今后的开发，那么这个时候我就要使用实例继承法来继承Error。

代码如下：

function ExtendingError(mes)

{

 var instance=new Error(mes);

 instance.NewError=function(){

 alert("Your Error is "+mes);

 }

 return instance;

}

好，测试下：

var e=new ExtendingError("Your number is less than one");

e.NewError();

alert(e.toString());

结果让我们满意：

[image: image12.png]Windows Internet Explorer

‘ YourEror s Your nmber s ess thanone

W

[image: image13.png]Windows Internet Expl

N

好，废话不多说，这个是非主流继承方式，基本只用于核心对象的继承，记住就好！

接下来看看非主流继承二：拷贝继承法.
顾名思义,拷贝继承，就是通过拷贝实现对象的继承，拷贝什么呢？很明显，就是对象的属性和方法，还记得Javascript中，类其实就一个Hashtable么？如果想不起来的话，就回去复习一下基础，我可能会在过一段时间写一篇关于Javascript对象的知识。

了解了这个就好办了，直接看代码：

首先写一个Extend方法：

Function.prototype.Extend=function(){

 for(var pro in obj)

 {

 //这样其实就是把父类的属性和方法完全复制过去了

 this.prototype[pro]=obj[pro];

}

}

好了，再写段代码看下如何使用：

function Animal()

{ }

function People()

{ }

People.Extend(new Animal())

{ }

明眼人一眼看出来，这个方法的缺点太明显了：

将对象的属性方法一一复制的时候，其实用的是反射，反射对效率的损伤我就不多说了。

和原型继承一样，必须初始化父类对象，当确定继承关系时，但是参数还不确定时，玩不转！

总之，这个方法一般情况下不用。

好了，下面说个常用的东西。混合继承！
这个是基于两个主流继承方式的。对比两个继承方式，我们可以发现两个继承方式的优缺点是互补的，那就好办了，混合到一起吧！

function People(name)

{

 this.name=name;

 this.SayName=function(){

 alert("My name is "+name);

}

}

function Girl(name,age)

{

 //构造继承

 this.father=People;

 this.father(name);

 delete this.father;

 this.Introduce=function(){

 alert("My name is "+name+".I am"+age);

}

}

//原型继承

Girl.prototype=new People();

好了，两种方式的混合，现在看看，是不是问题解决了呢？

var g=new Girl("Xuan",22);

alert(g instanceof People);

g.SayName();

g.Introduce();

[image: image14.png]Windows Internet Expl

N

W

[image: image15.png]Windows Internet Expl..

‘ My s s

W

[image: image16.png]Windows Internet Expl..

‘ Wy e s s a2

W

测试通过！

这是一个相对完美的解决方案，但是却增加了代码的复杂度，所以具体的方案还要靠大家在实践中去选择。

Javascript玩转继承的方式就这些，欢迎大家继续关注我的其他文章。

玩转方法:call和apply
在《Javascript玩转继承（一）》中，在实现继承的时候，用到了两个很特殊的方法，call和apply，下面，我就来说一下这个两个方法。

在ECMAScript v3中，给Function原型定义了这两个方法，这两个方法的作用都是一样的：使用这两个方法可以像调用其他对象方法一样调用函数，这句话是从书上抄的，至少我是没读明白这是什么意思。

下面说简单易懂的，先看段代码：

function Introduce(name,age)

{

 document.write("My name is "+name+".I am "+age);

}

var p=new People();

Introduce.call(p,"Windking",20);

就说上面的这段代码，用了call之后，Introduce就成了p的方法，不知道这样说你明白了么？使用了call方法，上述的代码就等同于了这个代码：

function People(name,age)

{

 this.name=name;

 this.age=age;

 this.Introduce=function(){

document.write("My name is "+name+".I am "+age);

};

}

明白意思了么？apply也是一样的作用。

好，我们不管这个方法到底能在实际中用到什么，先讲语法。

call接受至少一个参数，call的第一个参数是指你所需要的对象，比如说上面的那个例子,Introduce方法希望他能够被对象p所调用，那么就把p作为call的第一个参数。剩余的参数个数是任意的，作用是作为Introduce方法的参数。顺序按照Introduce参数声明的顺序。比如Introduce.call(p,"Windking",20)，假如Introduce是p的一个实例方法，那么也就是这样的：p.Introduce("Windking",20)。明白了么？记住，传入参数的顺序要与函数声明参数的顺序保持一致。

了解了call，apply方法就容易理解了，apply和call唯一的区别是call接受至少一个参数，而apply只接受两个参数，第一个参数与call一样，第二个参数是一个带下标的集合，比如说Introduce.call(p,"Windking",20)就可以改写成Introduce.apply(p,["Windking",20])了。这次明白了么？

那究竟这两个方法有什么用呢？如果我们只是为了实现上面的那个功能，把Introduce实现为People的方法不是更好么？

我把应用总结为两条：

共享方法。先看代码：

function Introduce(name,age)

{

 document.write("My name is "+name+".I am "+age);

}

这是一个自我介绍的方法，现在假设我们有一个男孩的类，和一个女孩的类（在这里我只是为了演示，在实际中，会用一个People的父类），因为他们的Introduce都是一样的，于是我们就可以共享这个方法。

function Boy()

{

 this.BoyIntroduce=function(){

Introduce.call(this,name,age);

};

}

同理，Girl中也是一样，这样的话，我们就可以避免写代码了。其实这个有些牵强，因为我们完全也可以写成：

function Boy()

{

 this.BoyIntroduce=function(){

 Introduce(name,age);

}

}

但是这个时候，我们如果用Apply的话，就看上去简单多了：

function Boy()

{

 this.BoyIntroduce=function(){

Introduce.apply(this,arguments);

};

}

是不是简单了很多呢？如果参数很多的话，那么是不是不用再写那么一场串密密麻麻的参数了呢！

跨域调用

看一个简单的例子（仅为演示，无任何价值）：

function Boy(name,age)

{

 this.BoyIntroduce=function(){

 document.write("My name is "+name+".I am "+age);

}

}

function Girl(name,age)

{

}

这是一个Boy和一个Girl类，然后我们写如下的代码：

var b=new Boy("Windking",20);

b.BoyIntroduce();

这没有任何异议。假设有一天有一个女孩也希望做一下自我介绍，只是偶然用一下，那么我就没有必要修改Girl类，因为其他的女孩比较害羞，不喜欢自我介绍。那么这个时候我就可以这样。

var g=new Girl("Xuan",22);

Introduce.call(g,"Xuan",22);

真正用处——继承

好了，上面都是雕虫小技，不登大雅之堂，下面才是call和apply最广泛的应用，就是用于构造继承。

这个请参看我的这个文章：《Javascript玩转继承（一）》

