2 Spring CloudfsiRSZFFASLE / 6-1 16 Resiliencedj EARRLI¥HE

16 Resiliencedj AR HiEi£ME

SEHAIE) : 2019-06-24 10:31:26

BRAKBEHINES.

AL GEZRIAR L, Rk S5 AT — AR ™) R B N . A A RENE ? RS . LG, BATmT
LR b B BRAK, (HRERIRSS T, X mEAKEDME], R HOIR ST (R B AR T, ERA
10003 HL4%, AR RGIEFBATHRIMENE (1-HFE3)M000 , X~ MREHE LG, RERIRFEIER
IBATHIMERARISIR N, 0 H A RAEBEAGF (500 2 A A 55 55 i (B A), AT AR RS T e ? B i~ —skif A
]

8

EFIR TTEATRIARSS SRR

AT 7 i BLAE T T A 55 E AT — A N B AE, FEAT UIRSS IR T SOOI SS s BB ILAE SR ARk
Mg T, TR SCATHBIB BCA WL, A RSN, T RIS EAR R A SRBORI S, ACRIT B Ui 55 %
A, BEBYEEE T, PRSI, RS, A TRNTREMA R A — IR S H O (%, ASRE
RAEMPEEIE, FNBEDNRGERUIEMERIEEIZT. KRB B, 87 LIXE bR, BT BA0 L
g7 5 o

Netflix Hystrix

file:///read
file:///read/37
file:///read/37/article/445
file:///read/37/article/447

Netflix Hystrix Wi /2 Spring Cloud H i i A SCRF 1 — PP IR 55 T 2 dt o 77 %8, {H2 BRI Hystrix ©484b
THPHAT, BARAXHFARLWOE RLWTH, HHEEREMN, REEHT IASEED H 8 Hystrix o (L2
KimkE, T 4EyIRAER Hystrix &£ T P8 G H & —An a8, Kl fE Spring Cloud Greenwich g1, &
T EALE T Hystrix (& E (2 W.Spring Cloud Greenwich.RELEASE is now available—30) , 1N A&:

CURRENT REPLACEMENT

Hystrix Resilienced)

Hystrix Dashboard / Turbine Micrometer + Monitoring System

Ribbon Spring Cloud Loadbalancer

Zuul 1 Spring Cloud Gateway

Archaius 1 Spring Boot external config + Spring Cloud Config

7£ Spring Cloud Greenwich i, *F Hystrix Ll Hystrix Dashboard & 5 #8445t T &A% BATEAN R
SRIETF 1B Spring Cloud Greenwich fix, 1H& ERIBLSZEE 0L, AR ISR KFERKEAH—T Hystrix 1
hRE, JRMERAIS AN Resiliencedj 1) .

M 55 ¥ bt

Hystrix $2HERI 5 — D INREFRIEWT. oKX BLULRIE T A R BT (AR I8, R4R7E 2 A IS B IRSsIS, diUR
IBRAERS, AR SETER, MAZREMSET X, @ % A RS ERBUCERILE SRR EIE, X
FEARIT, IR BORUUA T a8 I DhRER AN IR LY . M RGN Z G, ISl dicZ i otids B RSy, Akl B
HE 55 R LAASE PRI S U R R A 1

15t 55 % 2%

RS KNSRI S, B TOREMIM R RS M T . Bl A RS MA B IRS, WHIFABI, KAETH
Wr, AL A BRSSIRTSRER, ATRESe A — DRSS LE SNSRI (FRIX 2 — R R 51
T G T S ANRER U, KA A AR 55 B

HREH

IR AT AT, A R RARAR SR BEE IR), ARG RGP I 37 SR AR B SR R R 2
i) S B 1) e -

TERX B A2 Hystrix HATKIZEAE, BRIt ke, RATATREIE T EhC A H O/ Redis 247K S 41
B HR

HREI

AHF Dubbo , Spring Cloud R 52 [al /iR 2l HTTP SRSEEi. T HTTP Pl S s, 7E3
IRSEAIE, S s I A N B R A%, SR IEA R, AT DU SR A I oks2 I, RUE R 2 MG SR A
F—A, RiE—D HITP iR, ERFRERE, HEIGRERS KA FMFERS, XL CRERE
#io

S8R, Hystrix R AT REA ILIX LS, B RIETHIRMRG R XHKmUIR 55 70 R4, XA T —— 41 1.

Resilience4j

https://spring.io/blog/2019/01/23/spring-cloud-greenwich-release-is-now-available

Resiliencedj & Spring Cloud Greenwich i I FE MR T 5, ER-A—TNREXRIIFEE, % Netflix Hystrix [11)5
Kiit, ©E%KN Java 8 MEBHA MMM KiT. Resilienced) JEHHEL, HACKERMM Vawr (LAETFRA
Javaslang) , ‘EIEA AT HANANE EWIIH. L2 T, Netflix Hystrix X Archaius E A gw Bt X S8 1 5
LA EHS, 140 Guava 1 Apache Commons . 1M 415 f# fResilienced), RIET 5| F A&# Mk, nTLUMRIE AR
R Z T RE 5| ARG BRI AT

Resiliencedj thiffft 1 — RHME SRR S5 7T HITERThRE, L EDIREW T

—_

7 2%

PRI

T ESENRE
22

BRLF

R E K

2 T

Rk, BAHSEKEE Resiliencedj F1ix J LA Th g1 HA .

41 Resiliencedj RIFEAME, FAIF BB E—MNINRIAET . X EEATL K Resilienced) FIFEA %, i
L EHRULIE Spring Boot HH A, Rt B H FE A — A4~ Resiliencedj 35 i@ 1) Maven It HEIAT . |
HH231 Resiliencedj HWThfE, & ANTHREHXSRL T — MR, XEARIE FEIGPHES, Lo ek,
TXE R SRR e 8 B WS RIS ThRE . 34k, H T IRAE A o Illik R Resiliencedj MAE, Rt EIE
% Maven Wi H 5, PRI STl R, F:

<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>4.12</version>

</dependency>

Gy, LREGIERE 1 s TAEME OK 1.

5 28
W ik AR A1 a6 4L

fii /] Resiliencedj #& kRO 2 ThRE, 5 ZIATE SN0 T 4

<dependency>
<groupld>io.github.resilience4j</groupld>
<artifactld>resiliencedj-circuitbreaker</artifactld>
<version>0.13.2</version>

</dependency>

XAFEFAL T —A43EF ConcurrentHashMap () CircuitBreakerRegistry , CircuitBreakerRegistry /& 28 Fi 2 4x), I
HRJFE e, FFkFELMER CircuitBreakerRegistry Kl Ak 2 CircuitBreaker KL , FF &k FH vl LB #4F
FHBRIAf 4 i CircuitBreakerConfig 4 fii# CircuitBreaker szl CircuitBreakerRegistry , 17T fiizn:

CircuitBreakerRegistry circuitBreakerRegistry = CircuitBreakerRegistry.ofDefaults();

2RI R FE AT LR AL O CircuitBreakerConfig , #RJ/5#R#E H & X% CircuitBreakerConfig — Kfl#—4
CircuitBreakerRegistry 5245, kit CircuitBreaker Sl Wi AEH HE X CircuitBreakerConfig , A LA
e &~ 24

o WfEARWE TS, I BE, BiEgsat s iTT

W7 % 35 CRREFT TR (I IR), TERA W E RN (A2 5, W45 223 N F half open R4S
Mg As b T half open IRASET, MRTEE X K/

T A O I, B TR X (R

T S 2% R I R

o HJE X Predicate DM 555 & B L TN R F T

FARE T

CircuitBreakerConfig circuitBreakerConfig = CircuitBreakerConfig.custom()
failureRateThreshold(50)
.waitDurationinOpenState(Duration.ofMillis(1000))
-ringBufferSizelnHalfOpenState(2)
.ringBufferSizeInClosedState(2)
.build();
CircuitBreakerRegistry circuitBreakerRegistry = CircuitBreakerRegistry.of(circuitBreakerConfig);
CircuitBreaker circuitBreaker2 = circuitBreakerRegistry.circuitBreaker("otherName");
CircuitBreaker circuitBreaker = circuitBreakerRegistry.circuitBreaker("uniqueName", circuitBreakerConfig);

LHEARARES, EeE T — CircuitBreakerConfig %f % . 7E & X CircuitBreakerConfig Xf %, B E T #k% W4
N 50% , Wik s ORI IR A 2 B0, MWk as b T half open IRZSH, IRIEEMIX K/INA2, xR AubTF <R
ARF, HIBZEMIX A/NIUN2, SRETEEIE KA CircuitBreakerConfig X % f1J%—4 CircuitBreakerRegistry ,
FIR¥E CircuitBreakerRegistry G2 B4 Wi & CircuitBreaker .

WRFFRBEAME CircuitBreakerRegistry Sk HIBk A, A4 tn] LLE 014 —4 CircuitBreaker X%, i
Ji 0 r

CircuitBreaker defaultCircuitBreaker = CircuitBreaker.ofDefaults("testName");
CircuitBreaker customCircuitBreaker = CircuitBreaker.of("testName", circuitBreakerConfig);

S L E S 1]

Wik g] 1 imas i, TR R T A A CircuitBreaker.decorateCheckedSupplier(),
CircuitBreaker.decorateCheckedRunnable() z# CircuitBreaker.decorateCheckedFunction() >k#:4f Supplier /
Runnable / Function 5{# CheckedRunnable / CheckedFunction, 4XJ5 & Try.of(...) B¢ Try.run(...) AT T
BefE, AT LMEA map. flatMap. filter. recover mi# andThen BEATHEZCIET, (H L I T B8 7 v2: Wt K 2% 06 A AL
T CLOSED &% HALF_OPEN MRZ&. #ilun FE—AMIlF, QUa— AW as sk, w7 — s, XAk
R — B, ARG Try.of £HUT, $AT7HEHIEAS] map EdAT. WA — A REOE R PATE AN
AT, WFE A REHAT R, 4 map BRECK A 2T

CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("testName");
CheckedFunction0<String> decoratedSupplier = CircuitBreaker
.decorateCheckedSupplier(circuitBreaker, () -> "This can be any method which returns: 'Hello");
Try<String> result = Try.of(decoratedSupplier)
.map(value -> value + " world");
System.out.printin(result.isSuccess());
System.out.printin(result.get());

X BN e B A T AR R IR, PR R LUK AN R B 4) R BOE R R, R

CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("testName");
CircuitBreaker anotherCircuitBreaker = CircuitBreaker.ofDefaults("anotherTestName");
CheckedFunction0<String> decoratedSupplier = CircuitBreaker
.decorateCheckedSupplier(circuitBreaker, () -> "Hello");
CheckedFunction1<String, String> decoratedFunction = CircuitBreaker
.decorateCheckedFunction(anotherCircuitBreaker, (input) -> input + " world");
Try<String> result = Try.of(decoratedSupplier)
.mapTry(decoratedFunction::apply);
System.out.printin(result.isSuccess());
System.out.printin(result.get());

i % 4% 4T I

XA 7P CircuitBreaker , Hetfi V¥ PIANEREL 5 R T mapTry Jridoki®Efz. miigs KA i) LS
DL, HRPAT N, RIWTER & — BELAL TR IR, 5 FoRes RS RS — MBTER 84T P01 7, R

CircuitBreakerConfig circuitBreakerConfig = CircuitBreakerConfig.custom()
-ringBufferSizeInClosedState(2)
.waitDurationinOpenState(Duration.ofMillis(1000))

.build();

CircuitBreaker circuitBreaker = CircuitBreaker.of("testName", circuitBreakerConfig);

circuitBreaker.onError(0, new RuntimeException());

System .out printin(circuitBreaker.getState());

circuitBreaker.onError(0, new RuntimeException());

System.out.printin(circuitBreaker.getState());

Try<String> result = Try.of(CircuitBreaker.decorateCheckedSupplier(circuitBreaker, () -> "Hello"))
.map(value -> value + " world");

System.out.printin(result.isSuccess());

System.out.printin(result.get());

T AR, B SE R T B B LR A T ROPR X /N 2, B 2 KR BT DL G b
T A B E R, BRI 50% , %W onError RIS, TEVNIEAS SRR, KILM
B S TS FIIRAS, JEASTIF, B FREVIRA onError 77k, 4KJF P& SR WTBRBRIRA, ILIN RIL B 53
ZATTET, BUNIIE T 50% MM T .

by itk A% EL

Wrigt e SO E, HEZREIRET, IRE RIS, W

circuitBreaker.reset();

e 55 17 SR B 4
WESA RIS, MRS, T

CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("testName");
CheckedFunction0<String> checkedSupplier = CircuitBreaker.decorateCheckedSupplier(circuitBreaker, () -> {
throw new RuntimeException("BAM!");
M
Try<String> result = Try.of(checkedSupplier)
.recover(throwable -> "Hello Recovery");
System.out.printin(result.isSuccess());
System.out.printin(result.get());

W T E A RS %, mTLAEH Try.recover() 854%, 4 Try.of() iR\l Failure IR 45 B 2 24 fid o

WA MW

RS MW wT AR BRI A7 I 5% 24 i s A7 88l lan:

CircuitBreaker.Metrics metrics = circuitBreaker.getMetrics();
11 FREX b A

float failureRate = metrics getFailureRate();

11 3JHE Rk £

int failedCalls = metrics.getNumberOfFailedCalls();

R R

RateLimiter — A13ATAT T 5 2 Ik a5 SCbr_EARH REL WA N ETAFH

RateLimiterConfig 7] LARZE, FATTAT LARC B Wi T — 2240

o PRUEZIE IV A 8]
o BRELR KT 1]
o BMERIHIK

AR T A, FATHIA T EZ G 565 AR TR RHR, -

<dependency>
<groupld>io.github.resilience4j</groupld>
<artifactld>resiliencedj-ratelimiter</artifactld>
<version>0.13.2</version>

</dependency>

A VA

RateLimiterRegistry

il

flin, AHPREIZENERIFES 2QPS R EEIPIMER) , A% — DEFRIRE? EEEAN T AR =

JLIAT5 (8, AR .

RateLimiterConfig config = RateLimiterConfig.custom()
limitRefreshPeriod(Duration.ofMillis(1000))
limitForPeriod(2)
.timeoutDuration(Duration.ofMillis(1000))
.build();
RateLimiterRegistry rateLimiterRegistry = RateLimiterRegistry.of(config);
RateLimiter rateLimiterWithDefaultConfig = rateLimiterRegistry.rateLimiter("backend");
RateLimiter rateLimiterWithCustomConfig = rateLimiterRegistry.rateLimiter("backend#2", config);
RateLimiter rateLimiter = RateLimiter.of("NASDAQ :-)", config);

HMIFTIH A —4E, AT LIE A RateLimiterRegistry k4 — % # RateLimiter , 7] LLifid RateLimiter.of 775k

F#ZAE > RateLimiter. 8IEL4F 17, wtrl IEHEAEM 7, ARSI

CheckedRunnable restrictedCall = RateLimiter
.decorateCheckedRunnable(rateLimiter,()->{
System.out.printin(new Date());
D&
Try.run(restrictedCall)
andThenTry(restrictedCall)
.andThenTry(restrictedCall)
.andThenTry(restrictedCall)
.onFailure(throwable -> System.out.printin(throwable.getMessage()));

PATERUT

/Library/Java/JavaVirtualMachines/jdk-10.0.2.jdk/Contents/Home/bin/java ...

Fri Apr @5 19:59:52 CST 2019
Fri Apr @5 19:59:52 CST 2019
Fri Apr @5 19:59:53 CST 2019
Fri Apr @5 19:59:53 CST 2019

Process finished with exit code @

ATUES], BUOARRGR, — R RJAT TATHE, 55N T5ER 1s RHATH. IRESHhnT DER 20, Bz
Ja, ARRGAAARER, TGN 242 B0 T

rateLimiter.changeLimitForPeriod(100);
rateLimiter.changeTimeoutDuration(Duration.ofMillis(100));

e

PRy, ST R] ISRBUITA SEVFAISE AT SRS R, SREO X F .

rateLimiter.getEventPublisher()
.onSuccess(event -> {
System.out.printin(new Date()+">>>"+event.getEventType()+">>>"+event. getCreationTime());
H
.onFailure(event -> {
System.out.printin(new Date()+">>>"+event.getEventType()+">>>"+event.getCreationTime());

o}
T8 SR B B

AFTF Hystrix. Resiliencedj s 4trigRiES, FELETESE2MIERES, FPMGETEREMERES, B
PR FEARTT B AN 2R, AN e 2 00, 75 TSR SR % B A S AR A, 4R -

<dependency>
<groupld>io.github.resilience4j</groupld>
<artifactld>resilience4j-bulkhead</artifactld>
<version>0.13.2</version>

</dependency>

A LARE T BN B 68— BulkheadRegistry:

BulkheadRegistry bulkheadRegistry = BulkheadRegistry.ofDefaults();

W] BLE E R IFATEORN N EAIES Bulkhead I 2R A% 11 i R PR ZE (8], 40F

BulkheadConfig config = BulkheadConfig.custom()
.maxConcurrentCalls(150)
.maxWaitTime(100)
.build();
BulkheadRegistry registry = BulkheadRegistry.of(config);
Bulkhead bulkhead1 = registry.bulkhead("foo");
BulkheadConfig custom = BulkheadConfig.custom()
.maxWaitTime(0)
.build();
Bulkhead bulkhead?2 = registry.bulkhead("bar", custom);

X Bl oy RN AT T AN 2L, A —— B T . A4h, FFRFWRAEIE L BukheadRegistry K&
Bulkhead , 17 PLE %6 Bulkhead f152], 4iR:

Bulkhead bulkhead1 = Bulkhead.ofDefaults("foo");
Bulkhead bulkhead2 = Bulkhead.of(
"bar",
BulkheadConfig.custom()
.maxConcurrentCalls(50)
.build()

BIESF T2)5, (AP IRIMEEA EAWT 25— 25, 24BIan T

BulkheadConfig config = BulkheadConfig.custom()
.maxConcurrentCalls(1)
.maxWaitTime(100)
.build();
Bulkhead bulkhead = Bulkhead.of("testName", config):
CheckedFunction0<String> decoratedSupplier = Bulkhead.decorateCheckedSupplier(bulkhead, () -> "This can be any method which returns: "Hello");
Try<String> result = Try.of(decoratedSupplier)
.map(value -> value + " world");
System.out.printin(result.isSuccess());
System.out.printin(result.get());

R ER
HRRMCE R W R — A WIIRE, Resilienced) s tbthfefft 17 5CHF, #5651 N B UM SRR

<dependency>
<groupld>io.github.resilience4j</groupld>
<arfifactld>resiliencedj-retry</artifactld>
<version>0.13.2</version>

</dependency>

SR I I ARG ERAT B 2 — S E) S«

RetryConfig config = RetryConfig.custom()
.maxAttempts(3)
.waitDuration(Duration.ofMillis(500))
build();

Retry retry = Retry.of("id", config);

£ LI RIEE b, BATRCE 7 =k ECs3, Hik[E] [500ms, £ 1 Retry Sifi2 5, mtrl IE AL T

CheckedFunction0<String> retryableSupplier = Retry.decorateCheckedSupplier(retry, ()->{
System.out.printin(new Date());
return "hello retry";
o
Try<String> result = Try.of(retryableSupplier).recover((throwable) -> "Hello world from recovery function");
System.out.printin(result.isSuccess());
System.out.printin(result.get());

PATREFEANAT I B IEEA L, R PAT IR R I 5 1, At il E AL o
Gtz

Resiliencedj Hi&ft 72T JCache WIjikgs?, HEEILFRIT KT LL Redis 7 T, KREBHAZANAXE
AT T, AP E I A S L,

[{33)

Resiliencedj [/ PRI 88 & 4k A Future —dSRAEH, FFRH T ESEATEC B LI (R], 78 HART] Py 22 B 3R I
Flvalue, 4 Future WG H0E, (FHPEWR:
PRA B e th E IR, 4o

http://resilience4j.github.io/resilience4j/#_cache

<dependency>
<groupld>io.github.resilience4j</groupld>
<artifactld>resiliencedj-timelimiter</artifactld>
<version>0.13.2</version>

</dependency>

BB AT

TimeLimiterConfig config = TimeLimiterConfig.custom()
timeoutDuration(Duration.ofSeconds(60))
.cancelRunningFuture(true)
.build();
TimeLimiter timeLimiter = TimeLimiter.of(config);
ExecutorService executorService = Executors.newSingleThreadExecutor();
Supplier<Future<Integer>> futureSupplier = () -> executorService.submit(backendService::doSomething);
Callable restrictedCall = TimeLimiter
.decorateFutureSupplier(timeLimiter, futureSupplier);
Try.of(restrictedCall.call)
.onFailure(throwable -> System.out.printin(throwable.getMessage()));

XEELAE T —A TimeLimiter, X5 BT MBI, SRIEI—4 Supplier<Future> X%, &) 18 A FR
AR %, JIAHEN, onFailure J7 it S p ik .

WA DL RIS 25 AN R 2 5 S A H], AN 8l 2, B, T

Callable restrictedCall = TimeLimiter

.decorateFutureSupplier(timeLimiter, futureSupplier);
Callable chainedCallable = CircuitBreaker.decorateCallable(circuitBreaker, restrictedCall);
Try.of(chainedCallable::call)

onFailure(throwable -> LOG.info("\We might have timed out or the circuit breaker has opened."));

NG

RLERMKENB TGN TR Hystrix 1SR EThEE, XAMEFEAEN TR REmENE T
Resiliencedj [f—LILATIRE, XLLEARTIEEMRG 1 1ERIGHT. BRI, BRAT. 2247, FRBS AR, X BEATH 2
/21 T Resiliencedj f—LeiA % FXHATE MR —MEEE JavaSE i H H 51, X BEIFRM AF
RS, FROCERIGHRR A, EANIhREAAIIERHR S AR, M SeIR % R4 00wl .

AR AERIER. 1L — R

15 Feign AR, BIESERE 17 Resiliencedj TEBRESFIORL
A

48

	Netflix Hystrix
	服务熔断
	服务降级
	请求缓存
	请求合并

	Resilience4j
	断路器
	断路器初始化
	断路器使用案例
	断路器打开
	断路器重置
	服务请求降级
	状态监听

	限流
	基本用法
	事件监听

	请求隔离
	请求重试
	缓存
	限时
	小结

