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<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>4.12</version>

</dependency>

Gy, LREGIERE 1 s TAEME OK 1.

5 28
W ik AR A1 a6 4L

fii /] Resiliencedj #& kRO 2 ThRE, 5 ZIATE SN0 T 4

<dependency>
<groupld>io.github.resilience4j</groupld>
<artifactld>resiliencedj-circuitbreaker</artifactld>
<version>0.13.2</version>

</dependency>
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CircuitBreakerRegistry circuitBreakerRegistry = CircuitBreakerRegistry.ofDefaults();
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CircuitBreakerConfig circuitBreakerConfig = CircuitBreakerConfig.custom()
failureRateThreshold(50)
.waitDurationinOpenState(Duration.ofMillis(1000))
-ringBufferSizelnHalfOpenState(2)
.ringBufferSizeInClosedState(2)
.build();
CircuitBreakerRegistry circuitBreakerRegistry = CircuitBreakerRegistry.of(circuitBreakerConfig);
CircuitBreaker circuitBreaker2 = circuitBreakerRegistry.circuitBreaker("otherName");
CircuitBreaker circuitBreaker = circuitBreakerRegistry.circuitBreaker("uniqueName", circuitBreakerConfig);
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CircuitBreaker defaultCircuitBreaker = CircuitBreaker.ofDefaults("testName");
CircuitBreaker customCircuitBreaker = CircuitBreaker.of("testName", circuitBreakerConfig);
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CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("testName");
CheckedFunction0<String> decoratedSupplier = CircuitBreaker
.decorateCheckedSupplier(circuitBreaker, () -> "This can be any method which returns: 'Hello");
Try<String> result = Try.of(decoratedSupplier)
.map(value -> value + " world");
System.out.printin(result.isSuccess());
System.out.printin(result.get());
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CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("testName");
CircuitBreaker anotherCircuitBreaker = CircuitBreaker.ofDefaults("anotherTestName");
CheckedFunction0<String> decoratedSupplier = CircuitBreaker
.decorateCheckedSupplier(circuitBreaker, () -> "Hello");
CheckedFunction1<String, String> decoratedFunction = CircuitBreaker
.decorateCheckedFunction(anotherCircuitBreaker, (input) -> input + " world");
Try<String> result = Try.of(decoratedSupplier)
.mapTry(decoratedFunction::apply);
System.out.printin(result.isSuccess());
System.out.printin(result.get());
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CircuitBreakerConfig circuitBreakerConfig = CircuitBreakerConfig.custom()
-ringBufferSizeInClosedState(2)
.waitDurationinOpenState(Duration.ofMillis(1000))

.build();

CircuitBreaker circuitBreaker = CircuitBreaker.of("testName", circuitBreakerConfig);

circuitBreaker.onError(0, new RuntimeException());

System .out printin(circuitBreaker.getState());

circuitBreaker.onError(0, new RuntimeException());

System.out.printin(circuitBreaker.getState());

Try<String> result = Try.of(CircuitBreaker.decorateCheckedSupplier(circuitBreaker, () -> "Hello"))
.map(value -> value + " world");

System.out.printin(result.isSuccess());

System.out.printin(result.get());
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circuitBreaker.reset();
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CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("testName");
CheckedFunction0<String> checkedSupplier = CircuitBreaker.decorateCheckedSupplier(circuitBreaker, () -> {
throw new RuntimeException("BAM!");
M
Try<String> result = Try.of(checkedSupplier)
.recover(throwable -> "Hello Recovery");
System.out.printin(result.isSuccess());
System.out.printin(result.get());
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CircuitBreaker.Metrics metrics = circuitBreaker.getMetrics();
11 FREX b A

float failureRate = metrics getFailureRate();
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int failedCalls = metrics.getNumberOfFailedCalls();
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<dependency>
<groupld>io.github.resilience4j</groupld>
<artifactld>resiliencedj-ratelimiter</artifactld>
<version>0.13.2</version>

</dependency>
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RateLimiterConfig config = RateLimiterConfig.custom()
limitRefreshPeriod(Duration.ofMillis(1000))
limitForPeriod(2)
.timeoutDuration(Duration.ofMillis(1000))
.build();
RateLimiterRegistry rateLimiterRegistry = RateLimiterRegistry.of(config);
RateLimiter rateLimiterWithDefaultConfig = rateLimiterRegistry.rateLimiter("backend");
RateLimiter rateLimiterWithCustomConfig = rateLimiterRegistry.rateLimiter("backend#2", config);
RateLimiter rateLimiter = RateLimiter.of("NASDAQ :-)", config);
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CheckedRunnable restrictedCall = RateLimiter
.decorateCheckedRunnable(rateLimiter,()->{
System.out.printin(new Date());
D&
Try.run(restrictedCall)
andThenTry(restrictedCall)
.andThenTry(restrictedCall)
.andThenTry(restrictedCall)
.onFailure(throwable -> System.out.printin(throwable.getMessage()));
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Process finished with exit code @
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rateLimiter.changeLimitForPeriod(100);
rateLimiter.changeTimeoutDuration(Duration.ofMillis(100));
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rateLimiter.getEventPublisher()
.onSuccess(event -> {
System.out.printin(new Date()+">>>"+event.getEventType()+">>>"+event. getCreationTime());
H
.onFailure(event -> {
System.out.printin(new Date()+">>>"+event.getEventType()+">>>"+event.getCreationTime());
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<dependency>
<groupld>io.github.resilience4j</groupld>
<artifactld>resilience4j-bulkhead</artifactld>
<version>0.13.2</version>

</dependency>
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BulkheadRegistry bulkheadRegistry = BulkheadRegistry.ofDefaults();
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BulkheadConfig config = BulkheadConfig.custom()
.maxConcurrentCalls(150)
.maxWaitTime(100)
.build();
BulkheadRegistry registry = BulkheadRegistry.of(config);
Bulkhead bulkhead1 = registry.bulkhead("foo");
BulkheadConfig custom = BulkheadConfig.custom()
.maxWaitTime(0)
.build();
Bulkhead bulkhead?2 = registry.bulkhead("bar", custom);
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Bulkhead bulkhead1 = Bulkhead.ofDefaults("foo");
Bulkhead bulkhead2 = Bulkhead.of(
"bar",
BulkheadConfig.custom()
.maxConcurrentCalls(50)
.build()
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BulkheadConfig config = BulkheadConfig.custom()
.maxConcurrentCalls(1)
.maxWaitTime(100)
.build();
Bulkhead bulkhead = Bulkhead.of("testName", config):
CheckedFunction0<String> decoratedSupplier = Bulkhead.decorateCheckedSupplier(bulkhead, () -> "This can be any method which returns: "Hello");
Try<String> result = Try.of(decoratedSupplier)
.map(value -> value + " world");
System.out.printin(result.isSuccess());
System.out.printin(result.get());
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<dependency>
<groupld>io.github.resilience4j</groupld>
<arfifactld>resiliencedj-retry</artifactld>
<version>0.13.2</version>

</dependency>
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RetryConfig config = RetryConfig.custom()
.maxAttempts(3)
.waitDuration(Duration.ofMillis(500))
build();

Retry retry = Retry.of("id", config);
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CheckedFunction0<String> retryableSupplier = Retry.decorateCheckedSupplier(retry, ()->{
System.out.printin(new Date());
return "hello retry";
o
Try<String> result = Try.of(retryableSupplier).recover((throwable) -> "Hello world from recovery function");
System.out.printin(result.isSuccess());
System.out.printin(result.get());
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<dependency>
<groupld>io.github.resilience4j</groupld>
<artifactld>resiliencedj-timelimiter</artifactld>
<version>0.13.2</version>

</dependency>
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TimeLimiterConfig config = TimeLimiterConfig.custom()
timeoutDuration(Duration.ofSeconds(60))
.cancelRunningFuture(true)
.build();
TimeLimiter timeLimiter = TimeLimiter.of(config);
ExecutorService executorService = Executors.newSingleThreadExecutor();
Supplier<Future<Integer>> futureSupplier = () -> executorService.submit(backendService::doSomething);
Callable restrictedCall = TimeLimiter
.decorateFutureSupplier(timeLimiter, futureSupplier);
Try.of(restrictedCall.call)
.onFailure(throwable -> System.out.printin(throwable.getMessage()));
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Callable restrictedCall = TimeLimiter

.decorateFutureSupplier(timeLimiter, futureSupplier);
Callable chainedCallable = CircuitBreaker.decorateCallable(circuitBreaker, restrictedCall);
Try.of(chainedCallable::call)

onFailure(throwable -> LOG.info("\We might have timed out or the circuit breaker has opened."));
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