
 Spring Cloud微服务开发实践 / 6-2 17 Resilience4j 在微服务中的应用

17 Resilience4j 在微服务中的应用
更新时间：2019-06-26 10:11:00

上篇文章首先和大家大致说了下断路器 Hystrix ，然后详细说了下 Resilience4j 的用法，但是都是 JavaSE 环境下的

用法，并没有涉及到在微服务中的使用。Resilience4j 最终我们还是要在微服务中体现它的价值，我们学习它使用

它是为了解决微服务中的一些痛点，因此，本文我就来和大家分享下 Resilience4j 在微服务中的具体用法。

准备工作

首先我们需要先搭建一个测试环境，我这里创建一个名为 Resilience4j-SpringBoot 的父工程，然后在父工程中创建

一个名为 eureka 的子项目来搭建服务注册中心，然后再创建一个名为 provider 的服务提供者，将服务提供者注册

到 eureka 上，然后再在 provider 中提供一个 /hello 接口，内容如下：

这里接口中，我特意设置了一个异常， consumer 在调用这个接口的时候会调用失败，方便我们去测试请求重试等

功能。

机会不会上门来找人，只有人去找机会。
——狄更斯

@RestController
public class HelloController {
 @GetMapping("/hello")
 public String hello(String name) {
 String s = "hello " + name + " !";
 System.out.println(s+">>>>>"+new Date());
 int i = 1 / 0;
 return s;
 }
}

file:///read
file:///read/37
file:///read/37/article/446
file:///read/37/article/448

接下来再来创建一个 consumer。consumer 在创建的过程中只需要加入两个基本的依赖即可，即 spring-boot-starte

r-web 和 spring-cloud-starter-netflix-eureka-client ，其它的依赖我们在下面具体的使用过程中来说，创建完成后，

也将 consumer 注册到服务注册中心上。

这就是我们的准备工作，由于准备工作比较简单，大家不清楚的可以参考服务注册与消费一文，我这里就不再详细

介绍。

Retry

首先要和大家介绍的功能就是重试功能，开发环境一般比较稳定。微服务之间的调用，除非是逻辑错误导致调用失

败，一般来说可能很少会遇到网络原因导致的调用失败，但是在生产环境中，网络原因导致的调用失败却是一个不

能够忽略的问题，由于网络抖动造成的调用失败，我们一定要进行请求重试。

上文介绍的 Resilience4j 中的功能，在微服务中的使用都有两种不同的用法，一种就是借助 Spring AOP ，直接通

过一个注解来实现相关的功能；还有一种就是和上文一样，通过编程的方式来实现，这里分别来和大家介绍。

不过无论哪一种，我们都是需要首先添加依赖，不同于上篇文章我们根据 Resilience4j 提供的功能挨个加依赖，在

微服务中，我们可以直接引用 resilience4j-spring-boot2 依赖，这个依赖中包含了 Resilience4j 中提供的所有功能，

也包含了所需要的 Spring AOP 的依赖，如下图：

依赖代码如下：

AOP 式

依赖添加成功后，接下来在 application.yml 文件中配置 Retry 参数，如下：

<dependency>
 <groupId>io.github.resilience4j</groupId>
 <artifactId>resilience4j-spring-boot2</artifactId>
 <version>0.14.1</version>
</dependency>

resilience4j.retry:
 retryAspectOrder: 399
 backends:
 retryBackendA:
 maxRetryAttempts: 3
 waitDuration: 600
 eventConsumerBufferSize: 1
 enableExponentialBackoff: true
 exponentialBackoffMultiplier: 2
 enableRandomizedWait: false
 randomizedWaitFactor: 2
 retryExceptionPredicate: com.justdojava.consumer.RecordFailurePredicate
 retryExceptions:
 - java.io.IOException
 ignoreExceptions:
 - com.justdojava.consumer.IgnoredException

关于这一段的配置，解释如下：

1. retryAspectOrder 表示 Retry 的一个优先级。默认情况下， Retry 的优先级高于 bulkhead 、 Circuit breaker 以

及 rateLimiter ，即 Retry 会先于另外三个执行。 Retry、 bulkhead 、 Circuit breaker 以及 rateLimiter 的优先级

数值默认分别是 Integer.MAX_VALUE-3、Integer.MAX_VALUE-2、Integer.MAX_VALUE-1 以及

Integer.MAX_VALUE ，即数值越小，优先级越高；

2. backends 属性中我们可以配置不同的 Retry 策略，给不同的策略分别取一个名字， retryBackendA 就是一个

Retry 策略的名字。在 Java 代码中，我们将直接通过指定 Retry 策略的名字来使用某一种 Retry 方案；

3. maxRetryAttempts 表示最大重试次数；

4. waitDuration 表示下一次重试等待时间，最小为100 ms ；

5. eventConsumerBufferSize 表示重试事件缓冲区大小；

6. enableExponentialBackoff 表示是否开启指数退避抖动算法，当一次调用失败后，如果在相同的时间间隔内发起

重试，有可能发生连续的调用失败，因此可以开启指数退避抖动算法；

7. exponentialBackoffMultiplier 表示时间间隔乘数；

8. enableRandomizedWait 表示下次重试的时间间隔是否随机， enableRandomizedWait 和

enableExponentialBackoff 默认为 false ，并且这两个不可以同时开启；

9. retryExceptionPredicate 类似于我们上文所说的什么样的异常会被认定为请求失败，这里的

RecordFailurePredicate是一个自定义的类；

10. retryExceptions 表示需要重试的异常；

11. ignoreExceptions 表示忽略的异常。

RecordFailurePredicate 类的定义如下：

方便起见，我这里未做判断，直接返回 true 。

还有一个自定义的异常 IgnoredException ，如下：

配置完成后，接下来再在项目启动类中配置一个 RestTemplate ，如下：

然后创建一个 HelloService 来进行远程调用，如下：

public class RecordFailurePredicate implements Predicate<Throwable> {
 @Override
 public boolean test(Throwable throwable) {
 return true;
 }
}

public class IgnoredException extends Exception {
}

@SpringBootApplication
public class ConsumerApplication {
 public static void main(String[] args) {
 SpringApplication.run(ConsumerApplication.class, args);
 }
 @Bean
 @LoadBalanced
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

HelloService 本身是一个非常常规的类，RestTemplate 相信大家也是再熟悉不过了，唯一和我们前面学过的不同的

地方是这里类上多了一个 @Retry(name = “retryBackendA”) 注解，这个注解表示在当前所有类中开启请求失败重

试功能，请求失败重试策略就是 retryBackendA ，当然这个注解也可以加在某一个具体的方法上，表示只有该方法

开启请求失败重试功能。

做完这些之后，我们就可以分别启动 eureka、provider 以及 consumer 了，然后在浏览器中访问 consumer 接口，

观察 provider 的日志输出，就可以看到日志一共打印了三次，这里发生了请求失败重试。

编程式

在框架中，通过这种面向切面编程的方式来引用 Resilience4j 中的 Retry 功能固然很方便。不过， Resilience4j 也

支持编程式引用，编程式引用的方式就和我们上篇文章介绍的用法差不多了，举例如下：

通过编程式来引用 Resilience4j 中的 Retry 功能，则不再需要 application.properties 中的 Retry 相关配置，也不需

要在 HelloService 类上添加 @Retry 注解，所有关于重试的配置都是通过 Java 代码来实现，至于 Java 代码配置中

的含义，则和上文介绍的一致，这里不再赘述。

CircuitBreaker

Resilience4j 中断路器的用法和上文也是基本一致，分为两种，可以通过 AOP 的方式使用，也可以通过编程式使

用，我们分别来看。

AOP 式

由于在 Retry 中已经添加了 resilience4j-spring-boot2 依赖，这里我就不再重复说添加依赖的事了。在上个案例的

基础上，我们继续在 application.yml 文件中添加如下配置：

@Service
@Retry(name = "retryBackendA")
public class HelloService {
 @Autowired
 RestTemplate restTemplate;

 public String hello(String name) {
 return restTemplate.getForObject("http://provider/hello?name={1}", String.class, name);
 }
}

@RestController
public class UseHelloController {
 @Autowired
 HelloService helloService;
 @GetMapping("/hello2")
 public String hello2(String name) {
 RetryConfig config = RetryConfig.custom()
 .maxAttempts(3)
 .waitDuration(Duration.ofMillis(5000))
 .build();
 Retry retry = Retry.of("id", config);
 Try<String> result = Try.ofSupplier(Retry.decorateSupplier(retry, () -> helloService.hello(name)));
 return result.get();
 }
}

这里配置也很好理解，大部分参数和我们上篇文章介绍的一致：

1. backendA 是断路器策略的命名，和 Retry 类似，一会也是通过注解来引用这个策略；

2. ringBufferSizeInClosedState 表示断路器关闭状态下，环形缓冲区的大小；

3. ringBufferSizeInHalfOpenState 表示断路器处于 HalfOpen 状态下，环形缓冲区的大小；

4. waitInterval 表示断路器从 open 切换到 half closed 状态时，需要保持的时间；

5. failureRateThreshold 表示故障率阈值百分比，超过这个阈值，断路器就会打开；

6. eventConsumerBufferSize 表示事件缓冲区大小；

7. registerHealthIndicator 表示开启健康检测。

和 Retry 类似，在 Circuit Breaker 中，我们也可以通过 circuitBreakerAspectOrder 属性来修改 Circuit Breaker 的

执行优先级。

配置完成后，接下来我们来定义一个名为 HelloServiceCircuitBreaker 的类，在这个类中，来定义服务请求方法：

这里通过 @CircuitBreaker 注解来启用断路器。最后，我们在 UseHelloController 中调用这个方法即可。

但是这种写法有一个问题，就是没法进行服务容错降级，如果希望进行服务容错降级，那么还是需要我们上篇文章

提到的通过编程实现断路器功能。

编程式

通过编程实现断路器功能，就不再需要 application.yml 中的配置了，也不需要在类上添加 @CircuitBreaker(name =

“backendA”) 注解，所有的相关配置都是在 Java 代码中完成，和上篇文章基本一样，如下：

resilience4j.circuitbreaker:
 backends:
 backendA:
 ringBufferSizeInClosedState: 5
 ringBufferSizeInHalfOpenState: 3
 waitInterval: 5000
 failureRateThreshold: 50
 eventConsumerBufferSize: 10
 registerHealthIndicator: true
 recordFailurePredicate: com.justdojava.consumer.RecordFailurePredicate
 recordExceptions:
 - org.springframework.web.client.HttpServerErrorException
 ignoreExceptions:
 - org.springframework.web.client.HttpClientErrorException

@Service
@CircuitBreaker(name = "backendA")
public class HelloServiceCircuitBreaker {
 @Autowired
 RestTemplate restTemplate;

 public String hello(String name) {
 return restTemplate.getForObject("http://provider/hello?name={1}", String.class, name);
 }
}

我来和大家捋一捋上面这段代码的思路：

1. 首先利用 Java 代码创建一个 CircuitBreakerConfig 出来，然后配置一下故障率阈值，等待时间以及环形缓冲区大

小等；

2. 根据第一步创建出来的 CircuitBreakerConfig ，再去创建一个 CircuitBreaker 对象；

3. 通过 Try.ofSupplier 方法去发送一个请求，如果请求抛出异常，则在 recover 方法中进行服务降级处理，recover

可以写多个。

最后，在 UseHelloController 中调用这里的 hello2 方法去访问 provider 中的接口。接口调用失败后， consumer 中

自动进行服务降级，最终返回字符串为 有异常，访问失败! 。

RateLimiter

接下来我们再来说一说限流工具 RateLimiter ，限流工具的用法基本上和前两个差不多，可以通过 AOP 的方式使

用，也可以通过编程式来使用，下面分别来介绍。

AOP 式

通过 AOP 的方式来使用限流工具，首先在 application.yml 配置文件中添加 RateLimiter 相关配置，如下：

关于这段配置，我说如下几点：

1. backendA 在这里依然表示配置的名称，在 Java 代码中，我们将通过指定限流工具的名称来使用某一种限流策

略；

2. limitForPeriod 表示请求频次的阈值；

3. limitRefreshPeriodInMillis 表示频次刷新的周期；

4. timeoutInMillis 许可期限的等待时间，默认为5秒；

5. subscribeForEvents 表示开启事件订阅；

6. registerHealthIndicator 表示开启健康监控；

7. eventConsumerBufferSize 表示事件缓冲区大小。

配置完成后，创建一个 HelloServiceRateLimiter 类，内容如下：

public String hello2(String name) {
 CircuitBreakerConfig circuitBreakerConfig = CircuitBreakerConfig.custom()
 .failureRateThreshold(50)
 .waitDurationInOpenState(Duration.ofMillis(1000))
 .ringBufferSizeInHalfOpenState(20)
 .ringBufferSizeInClosedState(20)
 .build();
 io.github.resilience4j.circuitbreaker.CircuitBreaker circuitBreaker = circuitBreakerRegistry.circuitBreaker("backendA", circuitBreakerConfig);
 Try<String> supplier = Try.ofSupplier(io.github.resilience4j.circuitbreaker.CircuitBreaker
 .decorateSupplier(circuitBreaker,
 () -> restTemplate.getForObject("http://provider/hello?name={1}", String.class, name)))
 .recover(Exception.class, "有异常，访问失败!");
 return supplier.get();
}

resilience4j.ratelimiter:
 limiters:
 backendA:
 limitForPeriod: 1
 limitRefreshPeriodInMillis: 5000
 timeoutInMillis: 5000
 subscribeForEvents: true
 registerHealthIndicator: true
 eventConsumerBufferSize: 100

这里就是一个很常规的服务调用，然后在 UseHelloController 中调用该方法：

为了测试出效果，这里使用了一个 for 循环，循环中连续发送五次请求，我们发现服务端打印日志如下：

可以看到，限流已经生效。

编程式

当然，这里的效果也可以通过编程来实现。通过编程实现代码和上篇文章介绍的基本一致，同时，这里也不再需要

在 application.yml 中添加配置，所有的条件通过 Java 代码来配置即可，如下：

这里的代码和我们前文所讲的基本一致，创建一个 Supplier 对象，然后使用 Try.of 方法执行调用，且调用多次。

然后在 UseHelloController 中调用这个方法：

观察 provider 中的日志输出，我们可以看到，限流已经生效了。

小结

@Service
@RateLimiter(name = "backendA")
public class HelloServiceRateLimiter {
 @Autowired
 RestTemplate restTemplate;
 public String hello(String name) {
 return restTemplate.getForObject("http://provider/hello?name={1}", String.class, name);
 }
}

@GetMapping("/rl")
public void rateLimiter(String name) {
 for (int i = 0; i < 5; i++) {
 String hello = helloServiceRateLimiter.hello(name);
 }
}

public void hello2(String name) {
 RateLimiterConfig config = RateLimiterConfig.custom()
 .limitRefreshPeriod(Duration.ofMillis(5000))
 .limitForPeriod(1)
 .timeoutDuration(Duration.ofMillis(6000))
 .build();
 RateLimiterRegistry rateLimiterRegistry = RateLimiterRegistry.of(config);
 RateLimiter rateLimiter = RateLimiter.of("backendB", config);
 Supplier<String> supplier = RateLimiter.decorateSupplier(rateLimiter, () ->
 restTemplate.getForObject("http://provider/hello?name={1}", String.class, name)
);
 for (int i = 0; i < 5; i++) {
 Try<String> aTry = Try.ofSupplier(supplier);
 System.out.println(aTry.get());
 }
}

@GetMapping("/r2")
public void rateLimiter2(String name) {
 helloServiceRateLimiter.hello2(name);
}

 16 Resilience4j 基本用法详解 18 Micrometer 实现微服务监控

本文主要向大家介绍了 Resilience4j 在微服务中的应用。相对于 Hystrix ，Resilience4j 更加轻便简洁，而且到处充

满了 JDK8 的元素，确实非常好用，也是未来处理微服务系统稳定性的一个方向。

本文作者：纯洁的微笑、江南一点雨

	准备工作
	Retry
	AOP 式
	编程式

	CircuitBreaker
	AOP 式
	编程式

	RateLimiter
	AOP 式
	编程式
	小结

