
 Spring Cloud微服务开发实践 / 8-2 23 Spring Cloud Config 中配置文件的加密与解密

23 Spring Cloud Config 中配置文件的加密与解密
更新时间：2019-07-10 14:04:40

上篇文章和大家聊了 Spring Cloud Config 分布式配置中心的基本用法，相信大家对 Spring Cloud Config 已经有了

一个基本的认识。可能有读者也发现问题了，原本在非分布式环境下，一些由运维工程师掌握的敏感信息现在不得

不写在配置文件中了，这样网传的程序员删库跑路的段子可能就成真了！但是在微服务中，我们又不太可能让运维

工程师手动去维护这些信息，因为工作量太大了，那么一个好的办法，就是对这些配置信息进行加密，这也是我们

本文要说的重点。

常见加密方案

说到加密，需要先和大家来捋一捋一些常见的加密策略，首先，从整体上来说，加密分为两大类：

不可逆加密

可逆加密

不可逆加密就是大家熟知的在 Spring Security 或者 Shiro 这一类安全管理框架中我们对密码加密经常采取的方案。

这种加密算法的特点就是不可逆，即理论上无法使用加密后的密文推算出明文，常见的算法如 MD5 消息摘要算法

以及 SHA 安全散列算法， SHA 又分为不同版本，这种不可逆加密相信大家在密码加密中经常见到，就不需要松哥

多说了。

可逆算法看名字就知道，这种算法是可以根据密文推断出明文的，可逆算法又分为两大类：

对称加密

非对称加密

对称加密是指加密的密钥和解密的密钥一致，例如 A 和 B 之间要通信，为了防止别人偷听，两个人提前约定好一

个密钥。每次发消息时， A 使用这个密钥对要发送的消息进行加密，B 收到消息后则使用相同的密钥对消息进行解

密。这是对称加密，常见的算法有 DES、3DES、AES 等。

每个人都是自己命运的主宰。
——斯蒂尔斯

file:///read
file:///read/37
file:///read/37/article/508
file:///read/37/article/512

对称加密在一些场景下并不适用，特别是在一些一对多的通信场景下，于是又有了非对称加密，非对称加密就是加

密的密钥和解密的密钥不是同一个，加密的密钥叫做公钥，这个可以公开告诉任何人，解密的密钥叫做私钥，只有

自己知道。非对称加密不仅可以用来做加密，也可以用来做签名，使用场景还是非常多的，常见的加密算法是 RSA

。

配置文件加密肯定是可逆加密，不然给我一个加密后的字符串，我拿着也没用，还是没法使用。可逆算法中的对称

加密和非对称加密在 Spring Cloud Config 中都得到支持，下面我们就分别来看。

对称加密

Java 中提供了一套用于实现加密、密钥生成等功能的包 JCE(Java Cryptography Extension)，这些包提供了对称、

非对称、块和流密码的加密支持，但是默认的 JCE 是一个有限长度的 JCE ，我们需要到 Oracle 官网去下载一个

不限长度的 JCE ：

不限长度JCE下载地址

下载完成后，将下载文件解压，解压后的文件包含如下三个文件：

将 local_policy.jar 和 US_export_policy.jar 两个文件拷贝到 JDK 的安装目录下，具体位置是 %JAVA_HOME%\jre\li

b\security ，如果该目录下有同名文件，则直接覆盖即可。

这是我们的一点准备工作。

接下来步骤和上文一样，我们创建一个 CloudConfig 的父工程，在这个工程中创建 config_server 和 config_client

，同时继续使用上文创建的仓库 configRepo ，这一系列操作和上文一模一样，读者也可以不用创建新项目，直接

在上文的基础上进行修改，这里我就不赘述了。

当 config_server 和 config_client 都准备好之后，在 config_server 的 bootstrap.properties 文件中，添加如下一行

配置：

这就是我们配置的加密密钥了，配置完成后启动 config_server 。如果你使用的是 IntelliJ IDEA ，config_server 启

动成功之后，从控制台的 Mappings 中就能看到这里帮我们自动加入了好几个接口：

encrypt.key=123

http://download.oracle.com/otn-pub/java/jce/8/jce_policy-8.zip

这些接口中就有加解密的接口，也有查看加解密接口状态的接口，首先我们来查看接口状态，访问路径是： http://

127.0.0.1:8001/encrypt/status ，查看其加密模块是否正常运行：

看到 status 的值为 ok 表示这个模块正常运行，接下来调用 http://127.0.0.1:8001/encrypt 接口发送一个 POST 请

求，来给一段文本进行加密：

注意，请求参数就是要加密的字符串，请求的响应结果则是加密之后的文本。这个是加密接口，也有解密接口，解

密接口则是 /decrypt ，例如对刚刚加密的这个字符串进行解密：

同样是 POST 请求，请求参数是加密之后的文本，响应结果则是解密之后的明文文本。

在确保了这两个接口没问题的情况下，接下来修改本地仓库中的 client1-dev.properties 文件，将加密字符串拷贝进

来，如下：

注意加密字符串需要添加一个前缀 {cipher} ，有了这个前缀，当 config_server 加载到该文本时，就会对这个文本

进行解密，再返回给 config_client。修改完 client1-dev.properties 文件后，将之提交到 GitHub 上，然后重启

config_server ，也启动 config_client ，访问 config_client 的 /hello 接口，如下：

如果 config_client 加载的是其它配置文件的话，其它文件因为没有 {cipher} 前缀，所以就不会对相应的文本进行解

密。

好了，这个是使用对称加密的方式来加密配置文件。

非对称加密

当然我们也可以使用非对称加密的方式来对配置文件进行加密，非对称加密要求我们先有一个密钥，密钥的生成我

们可以使用 JDK 中自带的 keytool。keytool 是一个 Java 自带的数字证书管理工具 ，keytool 将密钥（key）和证书

（certificates） 存在一个称为 keystore 的文件中。具体操作步骤如下：

首先打开命令行窗口，输入如下命令：

参数解释：

-genkeypair 表示生成密钥对

-alias 表示 keystore 关联的别名

-keyalg 表示指定密钥生成的算法

-keystore 指定密钥库的位置和名称

以上命令在执行过程中，还有如下一些参数需要大家设置，如图：

执行过程中，密钥库口令需要牢记，这个我们在后面还会用到。其它的信息可以输入也可以直接回车表示 Unknown

，自己做练习无所谓，实际开发中还是建议如实填写。好了，这个命令执行完成后，在 D 盘下就会生成一个名为

config-server.keystore 的文件，将这个文件直接拷贝到 config_server 项目的 classpath 下，如下：

keytool -genkeypair -alias config-server -keyalg RSA -keystore D:\config-server.keystore

然后在 config_server 的 bootstrap.properties 文件中，添加如下配置（注意注释掉对称加密时的那一行配置）：

这四行配置根据生成过程的参数来配置即可。

配置完成后，重新启动 config_server 。启动成功后，加密解密的链接地址和对称加密都是一样的，因此，我们可

以继续使用 http://127.0.0.1:8001/encrypt 对文本进行加密，使用 http://127.0.0.1:8001/decrypt 对文本进行解密，

如下图：

加密请求：

解密请求：

两个请求接口都没问题，接下来，我们依然是修改 client1-dev.properties 文件，将加密字符串放进去，如下：

encrypt.key-store.location=config-server.keystore
encrypt.key-store.alias=config-server
encrypt.key-store.password=123456
encrypt.key-store.secret=123456

然后将本地仓库中的数据提交到远程仓库中。提交成功后，重启 config_client ，然后访问相关接口，我们发现数据

已经发生变化了。

好了，这是和大伙介绍的两种配置加密方式。

安全管理

目前的 config_server 存在很大的安全隐患，因为所有的数据都可以不经过 config_client 直接访问。出于数据安全

考虑，我们要给 config_server 中的接口加密。在 Spring Boot 项目中，项目加密方案当然首选 Spring Security ，

使用 Spring Security 也很简单，只需要在 config_server 项目中添加如下依赖即可：

添加完成之后，重启 config_server 项目，然后浏览器中输入 http://localhost:8001/client1/dev/master ，访问结果如

下：

可以看到，此时接口已经被保护起来了，必须要登录之后才能访问，默认的登录用户名是 user ，登录密码在

config_server 的启动控制台上，如下：

这是默认的登录密码，这个登录密码是项目启动时随机生成的，每次启动都不一样，如果想要使用固定的用户名密

码，则可以直接在 config_server 的 bootstrap.properties 配置文件中添加如下配置：

配置完成后，再次启动 config_server ，此时，控制台就不会有默认的随机密码输出了，用户需要使用 javaboy/123

来登录系统，登录之后，就可以访问 config_server 中的接口了。

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

spring.security.user.name=javaboy
spring.security.user.password=123

精选留言 0

欢迎在这里发表留言，作者筛选后可公开显示


目前暂无任何讨论

 22 初识 Spring Cloud Config 
24 Spring Cloud Config 服务

化、动态刷新、重试

当 config_server 中添加了接口之后，此时如果 config_client 不做任何额外的配置，直接启动，就会抛出如下错

误：

解决办法也很简单，直接在 config_client 的 bootstrap.properties 文件中添加如下配置：

配置完成后， config_client 就可以像之前一样访问 config_server 了。

小结

本文主要和读者聊了两个话题，文件加解密和 config_server 的安全管理。虽然是两个话题，其实是为了解决一个

问题，就是配置文件的安全问题，这两个技能点在分布式配置中心 Spring Cloud Config 中也算是刚需了，基本上都

会用到，大家一定要掌握。

spring.cloud.config.username=javaboy
spring.cloud.config.password=123

	常见加密方案
	对称加密
	非对称加密
	安全管理
	小结

