
 Spring Cloud微服务开发实践 / 10-2 28 Spring Cloud Stream 深入实践

28 Spring Cloud Stream 深入实践
更新时间：2019-07-26 09:34:26

上篇文章和大家聊了 Spring Cloud Stream 的基本架构和基本用法，包括基本的消息收发、自定义消息通道、消息

分组以及消息分区等。相信学习完之后，大家对于 Spring Cloud Stream 已经有了一个基本的认知。本文我想结合

具体项目中的一些使用场景，再来带大家看看 Spring Cloud Stream 的用法。

异步处理

案例介绍

很多场景下，我们都是使用消息中间件而不是多线程来处理一些异步任务，这样可以更好地实现应用程序的解耦。

一个常见的使用场景就是用户注册流程。一般来说，用户注册一个网站，可能都需要验证手机号码或者邮箱地址，

如果不使用异步处理的话，我们的流程可能是这样的：

机遇只偏爱那些有准备的头脑。
——巴斯德

file:///read
file:///read/37
file:///read/37/article/544
file:///read/37/article/546

引入异步处理之后，我们就可以将验证信息的发送交给消息中间件去做，然后就可以快速给前端一个响应，优化后

的流程像下面这样：

此时注册效率就会得到极大地提高。假设优化前每个流程需要 500ms ，那么总共需要 2.5s ，优化后则只需要 1.5s

就可以执行完步骤了。

接下来，我就通过一个简单的注册案例来向大家展示下 Spring Cloud Stream 在这个场景下的使用。

案例展示

首先我们来创建一个名为 streamdemo 的 Spring Boot 项目，创建时候添加四个依赖 Web、RabbitMQ 、Cloud S

tream、mail 以及 Thymeleaf，如下：

前三个依赖好理解，这和我们上篇文章所需要的依赖一样，后面两个则是用来发送邮件的，Mail 依赖用来添加邮件

发送支持，Thymeleaf 则用来构建邮件发送模版。

Spring Boot 创建完成后，接下来我们还需要启动 Docker 容器中的 RabbitMQ 中间件，中间件启动成功之后，我们

在 streamdemo 项目的 application.properties 中添加如下配置：

这样首先确保我们的 Spring Boot 具有连接消息中间件的能力，然后我们来添加一个简单的注册接口：

spring.rabbitmq.password=guest
spring.rabbitmq.username=guest
spring.rabbitmq.host=127.0.0.1
spring.rabbitmq.port=5672

这里为了简单处理，写入数据库的操作我就直接省略了。当服务端收到用户的注册信息时，先将信息保存到数据库

中，然后向消息中间件发送消息。发送完成之后，剩下的验证消息发送就是其它服务模块的事情了，注册流程此时

就可以直接返回了。

RegChannel 是一个自定义的消息通道，如下：

这里定义了两个消息通道，一个发送消息一个接收消息，应该不需要过多解释，和上篇文章基本一致。在实际生产

环境中，根据项目的实际情况，我们可能会单独创建一个消息发送微服务，这里为了方便给大家演示，我将消息发

送和接收放在同一个服务之中。当然，我们前文说过，这样定义之后，由于消息发送和接收不在同一个通道上，发

送的消息是无法收到的，所以我们还需要在 application.properties 文件中继续添加如下配置：

然后我们再来定义一个消息消费者，用来读取消息中间件中的消息，如下：

@RestController
public class RegController {
 @Autowired
 RegService regService;
 @PostMapping("/doReg")
 public Map<String, Object> reg(String email, String phone, String password) {
 return regService.reg(email, phone, password);
 }
}
@Service
public class RegService {

 @Autowired
 RegChannel regChannel;

 public Map<String, Object> reg(String email, String phone, String password) {
 //数据写入数据库
 Map<String, Object> map = new HashMap<>();
 map.put("email", email);
 map.put("phone", phone);
 regChannel.output().send(MessageBuilder.withPayload(map).build());
 map.put("msg", "验证短信已经发送，请注意查收！");
 return map;
 }
}

public interface RegChannel {
 String INPUT = "reg-input-channel";
 String OUTPUT = "reg-output-channel";

 @Output(OUTPUT)
 MessageChannel output();
 @Input(INPUT)
 SubscribableChannel input();
}

spring.cloud.stream.bindings.reg-input-channel.destination=javaboy-topic
spring.cloud.stream.bindings.reg-output-channel.destination=javaboy-topic

代码解释：

首先注入 TemplateEngine ，当我们在项目中引入 Thymeleaf 的依赖之后，就自动具备了这个 Bean 了，这个

Bean 一会儿用来将 Thymeleaf 模版渲染成 HTML 页面；

注入 MailService，这是一个我们封装好的邮件发送工具类；

监听邮件发送消息通道，在收到消息后，首先创建一个 Context 实例，这个实例中保存了我们即将渲染到

Thymeleaf 中的数据，然后向 Context 中保存两个变量，分别是 email 和生成的随机校验码 code ，这两个数据

我们将在 Thymeleaf 模版中使用；

调用 TemplateEngine 中的 process 方法，将 Thymeleaf 模版渲染成 HTML 页面；

调用 MailService 中的 sendHtmlMail 方法，执行邮件发送工作。

当然，要实现邮件发送工作，我们还需要在 application.properties 中配置一下连接邮件服务器的必备信息：

@EnableBinding(RegChannel.class)
public class SendVerifyCodeService {
 @Autowired
 TemplateEngine templateEngine;

 @Autowired
 MailService mailService;

 @StreamListener(RegChannel.INPUT)
 public void sendVerifyCode(Map<String, Object> map) {
 //发送验证邮件和短信
 System.out.println("receive:" + map);
 Context ctx = new Context();
 String email = (String) map.get("email");
 ctx.setVariable("email", email);
 ctx.setVariable("code",(int)(Math.random()*10000));
 String mail = templateEngine.process("mailtemplate.html", ctx);
 mailService.sendHtmlMail("1510161612@qq.com",
 email,
 "欢迎注册XXX网站",
 mail);

 }

}
@Component
public class MailService {
 @Autowired
 JavaMailSender javaMailSender;

 public void sendHtmlMail(String from, String to,
 String subject, String content){
 try {
 MimeMessage message = javaMailSender.createMimeMessage();
 MimeMessageHelper helper = new MimeMessageHelper(message, true);
 helper.setTo(to);
 helper.setFrom(from);
 helper.setSubject(subject);
 helper.setText(content, true);
 javaMailSender.send(message);
 } catch (MessagingException e) {
 System.out.println("发送失败");
 }
 }
}

这里的配置信息，我们在前面第 6 章中提到过，这里我就不再赘述了。唯一需要说的是，password 字段不是真正

的 password ，是我们申请到的一个授权码，授权码的具体申请方式参考本文附录。最后我们再来看看放在

resources/templates 目录下的邮件模版：

在邮件模版中，我们将动态渲染邮箱地址和验证码两个变量。好了，做完这两个操作之后，接下来我们就可以启动

我们的 Spring Boot 项目了。启动成功之后，通过 POSTMAN 发送一个注册请求，发送成功之后，我们就可以收到

注册邮件了，这个比较容易，我就不展示了。

定时任务

定时任务各种各样，常见的定时任务比如日志备份，我们可能在每天凌晨 3 点去备份，这种固定时间的定时任务我

们一般采用 cron 表达式就能轻松实现。还有一些比较特殊的定时任务，像大家看电影中的定时炸弹，3分钟后爆

炸，这种定时任务就不太好用 cron 去描述，因为开始时间不确定，我们开发中有的时候也会遇到类似的需求，此

时通过消息中间件就能够很方便地解决。

整体上来说，在 RabbitMQ 上实现定时任务有两种方式：

利用 RabbitMQ 自带的消息过期和私信队列机制，实现定时任务，这种方式较复杂；

使用 RabbitMQ 的 rabbitmq_delayed_message_exchange 插件来实现定时任务，这种方案较简单，使用较普

遍。

这里主要向大家展示第二种用法。

实践案例

首先我们需要下载 rabbitmq_delayed_message_exchange 插件。

spring.mail.host=smtp.qq.com
spring.mail.port=465
spring.mail.username=1510161612@qq.com
spring.mail.password=igprkcldlddxiiae
spring.mail.default-encoding=UTF-8
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
spring.mail.properties.mail.debug=true

<!DOCTYPE html>
<html lang="en" th="http://www.thymeleaf.org">
<head>
 <meta charset="UTF-8">
 <title>注册验证</title>
</head>
<body>
<div>注册验证</div>
<div>您的注册信息是：
 <table border="1">
 <tr>
 <td>邮箱地址</td>
 <td text="${email}"></td>
 </tr>
 <tr>
 <td>验证码</td>
 <td text="${code}"></td>
 </tr>
 </table>
</div>
<div>
 如果您未注册本站，请忽略本邮件。
</div>
</body>
</html>

rabbitmq_delayed_message_exchange插件下载

下载完成后解压，然后在命令行执行如下命令，将下载文件拷贝到 Docker 容器中去：

这里第一个参数是宿主机上的文件地址，第二个参数是拷贝到容器的位置。

接下来再执行如下命令进入到 RabbitMQ 容器中：

进入到容器之后，执行如下命令启用插件：

启用成功之后，还可以通过如下命令查看所有安装的插件，看看是否有我们刚刚安装过的插件，如下：

命令的完整执行过程如下图：

OK，配置完成之后，接下来我们执行 exit 命令退出 RabbitMQ 容器，然后开始编码，接下来的案例我们直接在前

文的基础上进行，我就不再另外单独搭建工程了。

首先我们来自定义一个消息通道，如下：

这里无需多做解释，接下来我们再来定义一个消息消费者：

cp /Users/sang/Downloads/rabbitmq_delayed_message_exchange-20171201-3.7.x.ez some-rabbit:/plugins

docker exec -it some-rabbit /bin/bash

rabbitmq-plugins enable rabbitmq_delayed_message_exchange

rabbitmq-plugins list

public interface DelayMsgChannel {
 String INPUT = "delay_msg_input";
 String OUTPUT = "delay_msg_output";

 @Input(INPUT)
 SubscribableChannel input();

 @Output(OUTPUT)
 MessageChannel output();
}

https://dl.bintray.com/rabbitmq/community-plugins/3.7.x/rabbitmq_delayed_message_exchange/rabbitmq_delayed_message_exchange-20171201-3.7.x.zip

大家看到，这里的所有定义，都是和前面的案例一样，好像并没有体现出消息延迟相关的配置。

接下来，我们再在 application.properties 中添加如下配置：

前两行配置表示配置消息队列；

后面两行表示分别在消息消费者和生产者中启用消息延迟功能。

配置完成之后，在添加一个消息生产者，如下：

注意，和前文不一样的地方是，这里的消息生产者多了一个延迟的头字段。另外，我们在消息发送时还打印出时间

日志，这样方便判断消息是否延迟。

做完这些事情之后，我们就可以启动项目了，启动成功之后，访问 /delay 接口，消息消费者就可以收到消息了。

对比消息发送和接收时间，就可以发现消息延迟了三秒之后才收到，如下图：

限流削峰

消息中间件另外一个广泛使用的场景就是限流削峰，大家知道解决高并发问题是一揽子方案，而不是靠某一种策略

就能解决高并发问题的，那么限流削峰就是这一揽子方案中的一个。

以商品秒杀为例，请求如果直接进入到业务层，由于业务层处理比较复杂，例如库存检查、库存冻结、余额检查、

余额冻结、订单生成、余额扣减、库存扣减、生成流水、余额解冻以及库存解冻等，这一套流程下来，耗时还是比

较长的，在高并发环境下可能会把业务层搞瘫痪。

@EnableBinding(DelayMsgChannel.class)
public class DelayMessageRecevier {
 @StreamListener(DelayMsgChannel.INPUT)
 public void recevier(String msg) {
 System.out.println("receive:" + msg + ">>>" + new Date());
 }

}

spring.cloud.stream.bindings.delay_msg_input.destination=delay_msg
spring.cloud.stream.bindings.delay_msg_output.destination=delay_msg
spring.cloud.stream.rabbit.bindings.delay_msg_output.producer.delayed-exchange=true
spring.cloud.stream.rabbit.bindings.delay_msg_input.consumer.delayed-exchange=true

@RestController
public class DelayMsgController {
 @Autowired
 DelayMsgChannel delayMsgChannel;
 @GetMapping("/delay")
 public void hello() {
 System.out.println("message send："+new Date());
 delayMsgChannel.output().send(MessageBuilder.withPayload("delay message!").setHeader("x-delay", 3000).build());
 }
}

此时我们可以加入一个消息队列实现限流削峰，即所有的请求都先进入到消息队列中，业务模块再去消息队列中读

取消息、挨个处理，整个过程还可以进行流量控制，这样就可以有效降低业务模块的压力。同时，在秒杀过程中，

那些进入消息队列较晚的消息，肯定是秒杀不到商品的，这时这个请求就可以直接处理，可以直接给用户返回秒杀

失败或者商品已售空。

小结

本文通过一个简单的例子向大家展示了 Spring Cloud Stream 在项目中的使用。实际上，Spring Cloud Stream 使用

场景还是非常多的，例如 A 服务调用 B 服务，如果不需要及时知道 B 服务的执行结果，此时就可以引入消息中间

件，如果 A 需要当时就知道 B 的执行结果，那么此时引入消息中间件就不合理了。把握住这一点，就能在项目中

合理使用消息中间件和 Spring Cloud Stream 了。通过本文的介绍，相信大家已经发现，无论是哪一种场景，如果

单纯从技术角度来说，用法基本上都是一样的，所以我们这里就给大家举两个典型例子就可以了。

附录

邮件协议

我们经常会听到各种各样的邮件协议，比如 SMTP、POP3、IMAP，那么这些协议有什么作用、有什么区别？我们

先来讨论一下这个问题。

SMTP 是一个基于 TCP/IP 的应用层协议，江湖地位有点类似于 HTTP，SMTP 服务器默认监听的端口号为 25 。

看到这里，小伙伴们可能会想到，既然 SMTP 协议是基于 TCP/IP 的应用层协议，那么我是不是也可以通过

Socket 发送一封邮件呢？回答是肯定的。

生活中我们投递一封邮件要经过如下几个步骤：

1.深圳的小王先将邮件投递到深圳的邮局；

2.深圳的邮局将邮件运送到上海的邮局 ；

3.上海的小张来邮局取邮件 。

这是一个缩减版的生活中邮件发送过程。这三个步骤可以分别对应我们的邮件发送过程，假设从 aaa@qq.com 发

送邮件到 111@163.com：

1. aaa@qq.com 先将邮件投递到腾讯的邮件服务器；

2. 腾讯的邮件服务器将我们的邮件投递到网易的邮件服务器；

3. 111@163.com登录网易的邮件服务器查看邮件。

邮件投递大致就是这个过程，这个过程就涉及到了多个协议，我们来分别看一下。

SMTP 协议全称为 Simple Mail Transfer Protocol ，译作简单邮件传输协议。它定义了邮件客户端软件与 SMTP 服

务器之间，以及 SMTP 服务器与 SMTP 服务器之间的通信规则。也就是说 aaa@qq.com 用户先将邮件投递到腾讯

的 SMTP 服务器这个过程就使用了 SMTP 协议，然后腾讯的 SMTP 服务器将邮件投递到网易的 SMTP 服务器这

个过程也依然使用了 SMTP 协议， SMTP 服务器就是用来收邮件。而 POP3 协议全称为 Post Office Protocol，译

作邮局协议，它定义了邮件客户端与 POP3 服务器之间的通信规则。那么该协议在什么场景下会用到呢？当邮件到

达网易的 SMTP 服务器之后，111@163.com 用户需要登录服务器查看邮件，这个时候该协议就用上了：邮件服务

商都会为每一个用户提供专门的邮件存储空间，SMTP服务器收到邮件之后，就将邮件保存到相应用户的邮件存储

空间中，如果用户要读取邮件，就需要通过邮件服务商的 POP3 邮件服务器来完成。最后，可能也有小伙伴们听说

过 IMAP 协议，这个协议是对 POP3 协议的扩展，功能更强，作用类似，这里不再赘述。

发送QQ邮件准备工作

mailto:aaa@qq.com
mailto:111@163.com
mailto:aaa@qq.com
mailto:aaa@qq.com

精选留言 0

欢迎在这里发表留言，作者筛选后可公开显示


目前暂无任何讨论

 27 构建消息驱动的微服务 
29 分布式链路跟踪和 Spring

Cloud Sleuth

安全起见，QQ 邮箱在使用 Java 代码发送邮件时，无法直接使用密码，而是需要通过授权码认证，授权码获取需

要首先登录QQ邮箱网页版，点击上方的设置按钮：

然后点击账户选项卡：

在账户选项卡中找到开启POP3/SMTP选项，如下：

点击开启，开启相关功能，开启过程需要手机号码验证，按照步骤操作即可，不赘述。开启成功之后，即可获取一

个授权码，将该号码保存好，在使用 Java 代码登录时，这个授权码就是密码。

	异步处理
	案例介绍
	案例展示

	定时任务
	实践案例

	限流削峰
	小结

	附录
	邮件协议
	发送QQ邮件准备工作

