
 Spring Cloud微服务开发实践 / 11-1 29 分布式链路跟踪和 Spring Cloud Sleuth

29 分布式链路跟踪和 Spring Cloud Sleuth
更新时间：2019-07-26 10:47:54

当代互联网服务，通常都是用复杂的、大规模分布式集群来实现的。互联网应用构建在不同的软件模块集上，而这

些软件模块，可能是由不同的团队开发、使用不同的编程语言来实现，可能分布在了几千台服务器上、横跨多个不

同的数据中心。因此，就需要一些可以帮助理解系统行为、用于分析性能问题的工具。

Spring Cloud Sleuth 的诞生便是为了帮助解决此类问题。在学习 Spring Cloud Sleuth 之前，我们需要先了解一下什

么是分布式链路跟踪，为什么我们需要分布式链路跟踪，以及它解决了什么样的问题。

在微服务架构中，服务被切割成了很多的微服务，这些微服务相互之间通过 Http 的方式交互。在一个小型的微服

务架构中，一次请求会涉及十几次不同项目之间的调用；在一个中型的互联网公司，一次请求平均会几百次的调用

请求。因此在出现问题时，我们可能需要了解这些问题:

如何快速发现问题？

一次请求都调用了哪些服务？

为什么请求这么慢，到底是哪里出现了问题？

请求调用失败时，究竟是哪个服务调用失败了？

如果按照传统的方式根据日志来跟踪，那么当项目出现问题时，可能需要运维查询上百台甚至上万台服务日志来定

位，仅日志收集一项就会产生巨大的工作量。即便使用 ELK 套件解决日志的收集问题，将这些日志进行关联、定

位也将是一个巨大的工作量。有更好的解决方案吗？这就涉及到了分布式链路跟踪的概念。

分布式链路跟踪

耐心和恒心总会得到报酬的。
——爱因斯坦

file:///read
file:///read/37
file:///read/37/article/545
file:///read/37/article/547

现今业界分布式链路跟踪的理论基础主要来自于 Google 的一篇论文《Dapper, a Large-Scale Distributed Systems

Tracing Infrastructure》。我们先根据一张图来了解一下一次请求的调用。

图来源于 Google Dapper

图中 A-E 分别表示五个服务，用户发起一次 X 请求到前端系统 A，然后 A 分别发送 RPC 请求到中间层 B 和 C，B

处理请求后返回，C 还要发起两个 RPC 请求到后端系统 D 和 E。

以上完整调用回路中，一次请求需要经过多个系统处理完成，并且追踪系统是持续跟踪到请求的每一步，也就是说

分布式链路跟踪需要记录、跟踪一次请求的所有相关数据。在前端用户发起一次 X 请求的时候，就需要给这个请求

生产一个唯一的 ID，在后面的所有请求调用中都需要带着这个 ID，最后根据这个 ID 将整个请求串联起来。

一个完成的分布式链路跟踪系统主要有三部分：数据收集、数据存储和数据展示。数据收集需要在调用的过程中，

记录每一次请求的开始时间、结束时间、服务ID等其它相关数据；数据存储需要在短时间内快速存储大量的跟踪数

据，并且需要满足快速检索的需求；数据展示，根据不同的维度以图形化的形式将收集的数据展示到页面，方便运

营人员对问题进行分析、定位。

Spring Cloud Sleuth 属于分布式链路跟踪系统中数据收集的一个实现，它支持集成 Zipkin 等产品以图形化的方式展

示分布式链路中收集的数据。

Spring Cloud Sleuth 介绍

Spring Cloud Sleuth 为 Spring Cloud 实现了分布式链路跟踪解决方案。Spring Cloud Sleuth 的实现过程也是充分吸

收借鉴了 Google Dapper 的思想，并且沿用了一些 Google Dapper 术语。

Spring Cloud Sleuth 为服务之间调用提供了链路追踪，通过 Sleuth 可以很清楚的了解到一个服务请求经过了哪些服

务，每个服务处理花费了多长时间，从而让我们可以很方便的理清各微服务间的调用关系。此外 Sleuth 还可以帮助

我们：

耗时分析: 通过 Spring Cloud Sleuth 可以很方便的了解到每个采样请求的耗时，从而分析出哪些服务调用比较耗

时；

可视化错误: 对于程序未捕捉的异常，可以通过集成 Zipkin 服务界面上看到；

链路优化: 对于调用比较频繁的服务，可以针对这些服务实施一些优化措施。

Sleuth 相关术语

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36356.pdf

Trace

服务追踪的追踪单元是从客户发起请求（request）抵达被追踪系统的边界开始，到被追踪系统向客户返回响应

（response）为止的过程，称为一个“trace”。Trace 由一组 Span 形成树状结构，例如，如果运行分布式大数据存

储，则可能由 PUT 请求形成 trace。

Span

每个 Trace 中会调用若干个服务，为了记录调用了哪些服务，以及每次调用的消耗时间等信息，在每次调用服务

时，埋入一个调用记录，称为一个“span”。 Span 是 Sleuth 的基本工作单元，若干个有序的 Span 组成一个

trace。Span 由唯一的 64 位 ID 标识，还有另外一个 64 位 ID 标识其所属的 Trace。

Span 可以启动和停止，它们可以追踪自己的时间信息，创建 span 后，必须在将来的某个时刻停止它。

启动 Trace 的初始 span 称为 root span，该 span 的 ID 值等于 trace ID。

Annotation

Annotation 相当于 Span 记录的语法，描述 Span 现在所处的状态，它主要由四个概念：

cs : Client Sent 客户端发送。表示一个 Span 的起始。

sr : Server Received 服务端接收。表示服务端接收到请求，并开始处理。如果减去 cs 的时间戳，则表示网络传

输时长。

ss : Server Sent 服务端完成请求处理，应答信息被发回客户端。如果减去 sr 的时间戳，则表示服务端处理请求

的时长。

cr : Client Received 客户端接收。标志着 Span 的结束，客户端成功的接收到服务端的应答信息。如果减去 cs 的

时间戳，则表示请求的响应时长。

记录过程

了解完这些概念之后，我们来看一下 Spring Cloud Sleuth 如何使用这些术语来完成一次 Trace 的记录。

图来源于 Spring Cloud Sleuth 官网。

图中可以看出请求涉及到四个服务，每一次的请求和响应都会产生一个 Span 状态，在 Span 中会存储 Span id 和

Trace id 用来标记他们的所属关系，同时 Span 中会使用 Annotation 标记每一个 Span 当前的状态。通过以上信息

的有序组合很直观的展示了一次请求（Trace）的调用过程。

图中标记的每种颜色表示一个 span（有七个 span — 从 A 到 G），Span 的格式如下：

此标记表示当前 Span 的 Trace Id 设置为 X，Span Id 设置为 D，此外，还发生了 Client Sent 事件。

Span 相互之间存在着父子关系，最开始的 Span 为初始 Span 没有父级，前面调用的 Span 是后面 Span 的父级。

依此类推上图中七个 Span 的父子关系如下：

图来源于 Spring Cloud Sleuth 官网。

跟踪原理

当我们项目中引入 spring-cloud-starter-sleuth包后，每次链路请求都会添加一串追踪信息，格式是 [server-name, mai

n-traceId,sub-spanId,boolean]。

server-name：服务结点名称；

main-traceId：一条链路唯一的 ID，为 TraceID；

sub-spanId：链路中每一环的 ID，为 SpanID；

boolean：是否将信息输出到 Zipkin 等服务收集和展示。

这种机制是如何实现的呢？我们知道 Spring Cloud 微服务是通过 Http 协议通信的，所以 Sleuth 的实现也是基于

Http 的，为了在数据的收集过程中不影响到正常业务，Sleuth 会在每个请求的 Header 上添加跟踪需求的重要信

息，例如：

这样在数据收集时，只需要将 Header 上的相关信息发送给对应的图像工具即可，图像工具根据上传的数据，按照

Span 对应的逻辑进行分析、展示。

小结

Trace Id = X # 所属 Trace id
Span Id = D # 自身 id
Client Sent # 状态

X-A1-TraceId：对应 TraceID；
X-A1-SpanId：对应 SpanID；
X-A1-ParentSpanId：前面一环的 SpanID；
X-A1-Sampled：是否被选中抽样输出；
X-Span-Name：工作单元名称。


28 Spring Cloud Stream 深入实
践 30 Spring Cloud Sleuth 实践

本节为大家介绍了分布式链路跟踪产生的背景，以及它解决了哪些问题。Spring Cloud Sleuth 是 Spring Cloud 体系

内分布式跟踪解决方案的组件之一，使用 Spring Cloud Seuth 可以轻松收集微服务架构中，每个请求的调用数据。

根据这些数据，我们能方便的解决服务性能优化、快速定位等问题。

参考出处：

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36356.pdf

https://www.ibm.com/developerworks/cn/web/wa-distributed-systems-request-tracing/index.html

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36356.pdf
https://www.ibm.com/developerworks/cn/web/wa-distributed-systems-request-tracing/index.html

	分布式链路跟踪
	Spring Cloud Sleuth 介绍
	Sleuth 相关术语
	记录过程
	跟踪原理
	小结

