
更新时间：2019-09-10 16:30:55

03 多线程开发如此简单—Java中如何编写多线程程序

1. Java 实现多线程的方式

前文介绍了多线程的各种应用场景，你是不是已经磨刀霍霍，迫不及待想进入 java 多线程的世界里了？别急，我

们第一步要先得到进入多线程世界的钥匙，也就是如何在 java 中实现多线程。

在 java 中实现多线程有四种方式，如下：

1. 继承 Thread 类

2. 实现 Runnable 接口

3. 使用 FutureTask

4. 使用 Executor 框架

其中继承 Thread 类和实现 Runnable 接口是最基本的方式，但有一个共同的缺点 ---- 没有返回值。而 FutureTask

则解决了这个问题，后面会单独讲解。Executor 是 JDK 提供的多线程框架，功能十分强大，后面也会有章节专门

讲解。本篇文章主要介绍前两种最基本的方式，目的是让你对多线程编程有初步的认识，带你打开多线程编程的大

门。

前文我说过，无形的软件，都来自于有形的现实世界。我们在学习多线程的过程中，时刻以现实世界作为参照，理

解起来就会容易很多。我们设想这样一个生活中的场景，看看程序如何实现。

学习这件事不在乎有没有人教你，最重要的是在于你自己有没有觉悟和恒心。

—— 法布尔

file:///read/49/article/937
file:///read/49/article/939

小明是一位学生，今天不太开心。因为昨天英语课学习了一个新的单词，今天考试时他写错了。老师惩罚他抄写

100 遍。这个单词有点长，是什么单词呢？internationalization。看着眼熟吗？做过国际化开发的同学一定认识，这

个单词因为太长，在 java 中被称为 i18n，也就是首字母 i 和尾字母 n 之间有 18 个字母。小明很苦恼，怎么能快点

写完呢？

2. 单线程实现单词抄写

OK，下面我们通过程序来模拟小明抄写单词的任务。我们编写如下几个类：

1、Punishment.java

存储要抄写的单词，以及剩余的抄写次数。主要代码如下：

2、Student.java

持有 Punishment 的引用。实现了抄写单词的 copyWord 方法。主要代码如下：

public class Punishment {
 private int leftCopyCount;
 private String wordToCopy;
}

Student 构造函数传入 Punishment。copyWord 方法是根据惩罚内容。完成单词抄写的主要逻辑。

我们重点看一下 coppyWord 方法。count 变量是计数器，记录抄写的总次数。threadName 是本线程的名称，这里

通过 Thread 的静态方法 currentThread 取得当前线程，然后通过 getName 方法获取线程名称。

在 while 循环体中，当 punishment 的剩余抄写次数大于 0 时，执行抄写逻辑，否则抄写任务完成，跳出循环。逻

辑很简单，相信大家都能看懂。接下来我们通过 main 方法尝试运行，看看效果。main 方法代码如下：

输出如下：

在控制台可以清楚地看到小明抄写了 100 次单词。不过此时的代码并没有引入多线程，是单线程小明在工作。唯一

看到的和线程沾边的就是日志中的 “main 线程”，这是通过 Thread.currentThread().getName () 获取的当前线程名

称，也就是 main 函数所在的线程。

3. 继承 Thread 实现独立线程单词抄写

接下来我们尝试为小明单独起一个线程做这个事情，而不是在 main 线程中完成。回到我们所讲的主题，实现多线

程的方式上，我们先采用继承 thread 类，重写 run 方法的方式。改版后，student 代码如下：

public class Student {
 private String name;
 private Punishment punishment;

 public Student(String name,Punishment punishment) {
 this.name=name;
 this.punishment = punishment;
 }

 public void copyWord() {
 int count = 0;
 String threadName = Thread.currentThread().getName();

 while (true) {
 if (punishment.getLeftCopyCount() > 0) {
 int leftCopyCount = punishment.getLeftCopyCount();
 System.out.println(threadName+"线程-"+name + "抄写" + punishment.getWordToCopy() + "。还要抄写" + --leftCopyCount + "次");
 punishment.setLeftCopyCount(leftCopyCount);
 count++;
 } else {
 break;
 }
 }

 System.out.println(threadName+"线程-"+name + "一共抄写了" + count + "次！");
 }
}

public class StudentClient {
 public static void main(String[] args) {
 Punishment punishment = new Punishment(100,"internationalization");
 Student student = new Student("小明",punishment);
 student.copyWord();
 }
}

main线程-小明抄写internationalization。还要抄写99次
.........（中间省略）
main线程-小明抄写internationalization。还要抄写0次
main线程-小明一共抄写了100次！

三个变化点在代码中已经标出。不再多说，只提醒下，在第 2 个点，我们设置了线程的名称，一会在输出中会看到

带来的变化。

main 方法代码如下：

可以看到此时调用的不是 student 的 copyWord 方法，而是调用了 start 方法。start 方法是从 Thread 类继承而

来，调用后线程进入就绪状态，等待 CPU 的调用。而 start 方法最终会触发执行 run 方法，在 run 方法中

copyWord 被执行。输出如下：

我们可以看到，现在不再是 main 线程在工作了，而是小明线程。这说明 student 已经工作在 “小明” 线程上。为了

更加直观，我们在 student.start () 后面加一行代码:

//1、继承Thread类
public class Student extends Thread{
 private String name;
 private Punishment punishment;

 public Student(String name, Punishment punishment) {
 //2、调用Thread构造方法，设置threadName
 super(name);
 this.name=name;
 this.punishment = punishment;
 }

 public void copyWord() {
 int count = 0;
 String threadName = Thread.currentThread().getName();

 while (true) {
 if (punishment.getLeftCopyCount() > 0) {
 int leftCopyCount = punishment.getLeftCopyCount();
 System.out.println(threadName+"线程-"+name + "抄写" + punishment.getWordToCopy() + "。还要抄写" + --leftCopyCount + "次");
 punishment.setLeftCopyCount(leftCopyCount);
 count++;
 } else {
 break;
 }
 }
 System.out.println(threadName+"线程-"+name + "一共抄写了" + count + "次！");
 }
 //3、重写run方法，调用copyWord完成任务
 @Override
 public void run(){
 copyWord();
 }
}

public class StudentClient {
 public static void main(String[] args) {
 Punishment punishment = new Punishment(100,"internationalization");
 Student student = new Student("小明",punishment);
 student.start();
 }
}

小明线程-小明抄写internationalization。还要抄写99次
......（中间省略）
小明线程-小明抄写internationalization。还要抄写0次
小明线程-小明一共抄写了100次！

再次运行程序，输出如下：

可以看到主线程在 student.start () 后，会立即向下执行。而小明线程则在独立执行 copyWord 方法。这里你可以做

个对比，单线程情况下，一定是在小明抄写的所有输出后才会输出 “main thread is finished”。

4. 多线程并发实现单词抄写

你心里一定在想，这个例子没有看到多线程的好处啊？是的，如果仅仅是小明一个人去完成任务，其实和单线程没

有区别。但是假如小明找来了几个同学帮他一起写呢？

我们在 main 方法中启动多个线程一块完成单词抄写任务：

大家对这段代码的期望结果是什么呢？按照正常的逻辑，应该是小明先开始写，他会抄写的次数多一点，而小张和

小赵抄写的次数少一点，但是三人抄写的总量应该是 100。不过事与愿违，我们在控制台可以看到如下输出：

小明的工作量不但没有减少，还连累小张和小赵白白抄写了 100 遍，为什么会这样呢？！我在下篇专栏中会详细解

答。这里我可以先肯定的告诉你，我们是有办法解决现在的问题，达到想要的执行效果。本篇文章我们还是聚焦在

多线程如何实现上。

接下来，我们看另外一种多线程实现方式。

5. 实现 Runnable 接口，启用单独线程抄写单词

上面讲解了通过继承 Thread 的方式来实现多线程，接下来我们看看如何以实现 Runnable 接口的形式实现多线

程。student 代码改造后如下：

System.out.println("Another thread will finish the punishment。 main thread is finished");

Another thread to finish the punishment。main thread is finished
小明线程-小明抄写internationalization。还要抄写99次
......（中间省略）
小明线程-小明抄写internationalization。还要抄写0次
小明线程-小明一共抄写了100次！

public static void main(String[] args) {
 Punishment punishment = new Punishment(100,"internationalization");

 Student xiaoming = new Student("小明",punishment);
 xiaoming.start();

 Student xiaozhang = new Student("小张",punishment);
 xiaozhang.start();

 Student xiao赵 = new Student("小赵",punishment);
 xiaozhang.start();
}

小赵线程-小赵一共抄写了100次！
小明线程-小明一共抄写了100次！
小张线程-小张一共抄写了100次！

和继承 thread 实现多线程的区别，在于现在是实现 runnable 接口。不过也是需要实现 run () 方法。另外由于

runnable 是接口，所以之前构造函数中调用父类构造函数的语句需要去掉。

我们再看看 StudentClient 的代码：

可以看到我们需要创建一个 thread，把实现了 runnable 接口的对象通过构造函数传递进去，Thread 构造函数的第

二个参数是自定义的 thread name。之前由于 Student 就是 Thread 的子类，所以我们直接通过 new Student 就可

以得到线程对象。最后都是通过调用 Thread 对象的 start 方法来启动线程。运行代码后发现输出结果和继承

thread 方式是一模一样的。

6. 总结

本篇讲解的内容非常基础，目的在于让大家对多线程开发有所感知，快速上手。建议大家自己把代码敲一边，体会

两种启动线程方式的异同。此外，可以重点思考下，为什么多线程并发时，结果并不是我们所期望的。看一看你的

答案是否和下篇专栏所写的原因一样。通过本篇学习，我们知道在 java 中启动多线程非常简单。但是，要想处理

好多线程间的协调，并不是一个容易的事情。而多线程开发的难点也就在于此。下一节我们就来看看多线程开发中

会遇到的问题。

public class Student implements Runnable{
 private String name;
 private Punishment punishment;

 public Student(String name, Punishment punishment) {
 this.name=name;
 this.punishment = punishment;
 }

 public void copyWord() {
 int count = 0;
 String threadName = Thread.currentThread().getName();

 while (true) {
 if (punishment.getLeftCopyCount() > 0) {
 int leftCopyCount = punishment.getLeftCopyCount();
 System.out.println(threadName+"线程-"+name + "抄写" + punishment.getWordToCopy() + "。还要抄写" + --leftCopyCount + "次");
 punishment.setLeftCopyCount(leftCopyCount);
 count++;
 } else {
 break;
 }
 }

 System.out.println(threadName+"线程-"+name + "一共抄写了" + count + "次！");
 }

 //重写run方法，完成任务。
 @Override
 public void run(){
 copyWord();
 }
}

public class StudentClient {
 public static void main(String[] args) {
 Punishment punishment = new Punishment(100,"internationalization");
 Thread xiaoming = new Thread(new Student("小明",punishment),"小明");
 xiaoming.start();
 }
}


02 绝对不仅仅是为了面试—我们
为什么需要学习多线程 

04 人多力量未必大—并发可能会
遇到的问题

}

	1. Java 实现多线程的方式
	2. 单线程实现单词抄写
	3. 继承 Thread 实现独立线程单词抄写
	4. 多线程并发实现单词抄写
	5. 实现 Runnable 接口，启用单独线程抄写单词
	6. 总结

