
更新时间：2019-09-25 15:29:02

08 集体协作，什么最重要？沟通！—线程的等待和通知

世界上最宽阔的是海洋，比海洋更宽阔的是天空，比天空更宽阔的是人的胸怀。

——雨果

file:///read/49/article/942
file:///read/49/article/944

通过前面几节的学习，我们了解了在 Java 中如何启动一个线程，并且学习了 Thread 类的 API 以及线程的状态。

假如将多线程比作多个机器人一起工作，那么我们讲到现在，所生产的机器人确实能够担当干活的责任了。每个机

器人各司其职，尽职尽责地去完成自己的工作。他们每个人不断去查看自己的任务列表，有了新的任务就去工作，

没有的话会持续查看。OK，这样没有问题，机器人能够一起把工作干完。但是你不觉得缺了点什么吗？或者说你

不觉得机器人少了什么器官？没错，嘴巴！这个过程太安静了，居然没有机器人说话！这在现实世界是不可想象

的。在现实世界里，即便最简单的两人配合工作都需要沟通和交流。

我们回忆一下之前学生抄写单词的例子。那个例子中抄写的次数提前预置，每个学生抄写前领取一次抄写的任务，

然后更新剩余抄写次数，直到所有抄写次数全部完成。这个例子比较简单，但是假如今天老师发飙了，除了抄写

internationalization 这个单词，她还会一直给你新的单词抄写作业。此时，作为学生在抄写完 internationalization 后

他有两个选择。一是不停的盯着老师，直到老师发给他新的作业。二是他先休息一会，老师准备好新的作业时再叫

他。假如我是学生，我肯定选择第二种。因为第一种太累了，要一直盯着老师。第一种方式在程序中叫做轮询。而

第二种方式就引出了我们本节要讲解的 wait/notify。

1. wait/notify 概念

我们先从概念上初步了解 wait/notify。原本 RUNNING 的线程，可以通过调用 wait 方法，进入 BLOCKING 状态。

此线程会放弃原来持有的锁。而调用 notify 方法则会唤醒 wait 的线程，让其继续往下执行。

你可能有疑问，既然这两个方法都和线程有关系，为什么没有放在上一节线程 API 中讲解呢？这是因为这两个方法

并不在 Thread 对象中，而是在 Object 中。也就是说所有的 Java 类都继承了这两个方法。所有 Java 类都会继承

这两个方法的原因是 Java 中同步操作的需要。

2、同步

讲到这里，我们必须要对线程同步有所了解。那么什么是线程同步呢？我们先看看什么是异步，异步其实就是指多

个线程同时执行。但在多个线程同时执行的过程中，可能会访问共享资源，此时我们希望确保多个线程在同一时间

只能有一个线程访问，此时就称之为线程同步。

在多线程开发中最基本的同步方式就是通过 synchronized 关键字来实现。第三节中我们单词抄写的程序并没有彻底

解决线程安全问题，仍旧可能出现重复抄写。这是因为我们对抄写次数这个共享资源的访问没有做同步。现在我们

使用 synchronized 关键字对抄写单词的核心逻辑进行改写，如下：

原来的代码如下：

可以做一下比较。修改后的代码中，读取和更新 leftCopyCount 的两步操作放在了 synchronized 代码块中，在此代

码块中的代码会确保同一时间只有一个线程能够执行。这也称之为加上了锁，只有获取锁的线程才能执行同步代

码，执行完成后则会释放锁。因此在 synchronized 代码块中操作 punishment 是安全的。当前线程取出来的

leftCopyCount 值，在同步代码块结束前，也就是 set 回去前，并不会被其它线程所改变。所以它并不需要像原来

代码那么啰嗦，取出来后更新前还要再比较一次。其实原来代码即使又做了比较，也无法 100% 确保更新操作前没

有被别的线程修改。这在第三节的实验中已经得到证实。正确的编写方式应该把共享资源的操作放在 synchronized

代码块中，这样才能 100% 确保程序的正确性。

注意修改后的代码，并没有把输出抄写内容放到 synchronized 代码块中。因为这一步操作其实和共享资源已经无

关，所以没必要再持有锁，这会延长其它线程等待锁的时间，降低了并行代码的效率。这在我们实际开发中要注

意，尽量把不需要同步的代码移出 synchronized 代码块。

3、使用 wait/notify

了解完 synchronized，我们再回头看 wait 操作。synchronized 关键字需要配合一个对象使用，其实这个对象可以是

任何对象，只不过为了代码好懂，这里使用了共享资源对象 punishment，语义上表示对该对象上锁，但你换成其它

任何对象一样是可以的。

while (true) {
 int leftCopyCount = 0;
 //在同步代码块中访问punishment，确保读取和更新数量时，只有一个线程访问到共享资源
 synchronized (punishment){
 if (punishment.getLeftCopyCount() > 0) {
 leftCopyCount = punishment.getLeftCopyCount();
 punishment.setLeftCopyCount(leftCopyCount - 1);
 }
 }

 if(leftCopyCount>0){
 System.out.println(threadName + "线程-" + name + "抄写" + leftCopyCount + "。还要抄写" + leftCopyCount - 1 + "次");
 count++;
 }else{
 break;
 }
}

while (true) {
 if (punishment.getLeftCopyCount() > 0) {
 int leftCopyCount = punishment.getLeftCopyCount();
 if (leftCopyCount == punishment.getLeftCopyCount()) {
 punishment.setLeftCopyCount(leftCopyCount - 1);
 System.out.println(threadName + "线程-" + name + "抄写" + punishment.getWordToCopy() + "。还要抄写" + leftCopyCount-1 + "次");
 count++;
 }
 } else {
 break;
 }
}

其实 synchronized 所使用的对象，只是用来记录等待同步操作的线程集合。他相当于一位排队管理员，所有线程都

要在此排队，并接受他的管理，他说谁能进就可以进。另外他维护了一个 wait set，所有调用了 wait 方法的线程都

保存于此。一旦有线程调用了同步对像的 notify 方法，那么 wait set 中的线程就会被 notify，继续执行自己的逻

辑。

这也解释了为什么 synchronized 的对象并不一定是共享资源对象。这个对象只是看门人，确保同步代码块中的代码

只有一个线程能够进入执行，但这个看门的工作并不一定要共享资源对象来做。任何对象都可担当此工作。

需要注意的是，我们对哪个对象做了 synchronized 操作，那么就只能在同步代码块中使用此对象进行 wait 和 notify

的操作。这也很好理解，只有当看门人在听你讲话时，他才能按你的要求去做事情。我们只有获得了和同步对象的

对话权，这个对象才能听此线程的命令。无论是请求加入 wait set 还是要通知 wait set 中的线程出来，均是如此。

wait 和 notify 示例代码如下：

假如此段代码在 A 线程中。这段代码会在执行一些逻辑后把 A 线程放入 punishment 对象的 wait set 中，并且 A 线

程会释放持有的锁。

我们再看看另外一个 B 线程中的部分代码：

synchronized (punishment){
//do something
punishment.wait();
//continue to do something
}

synchronized (punishment){
//do something
punishment.nofity();
//continue to do something
}

 07 深入Thread类—线程API精讲 
09 使用多线程实现分工、解耦、

缓冲—生产者、消费者实战

这段代码会 notify 在 punishment 对象的 wait set 中的一个线程，将其弹出。比如此时 A 线程在 wait set 中，那么

A 线程将被弹出。被弹出的 A 线程会在获取 CPU 资源后继续执行 wait 方法后面的逻辑。

最后再说一下 notifyAll 方法。我们知道 notify 可以唤醒 wait set 中的一个线程，但是如果 wait set 中存在多于一个

线程时，我们并无法控制哪个线程被唤醒。假如所有线程的执行逻辑都是一样的，那么无所谓谁被唤醒，因为都是

干一样的工作。

但如果是本节前面提出的问题，一个老师线程负责留作业，一个学生线程负责写作业。假如此时开启了多个学生线

程，当学生写完作业后本来需要通知老师留作业，但被 notify 的并不一定的是老师线程，也可能 notify 了其他学生

线程。

为了解决这个问题，我们可以使用 notifyAll 来唤醒所有在此对象的 wait set 上的线程。而获得锁的线程是否真的需

要做什么工作是由自己控制的。如果学生线程先抢到 CPU 资源，但是由于作业列表为空，他又会选择 wait 进入

wait set。此时他会释放锁。而老师线程此时会获得锁，在看到作业列表为空后，则会添加新的作业。通过

wait/notifyAll 让多个线程交互，同时通过共享资源的状态，各线程控制自己的逻辑。这样的程序称之为状态驱动程

序。也就是说是否真的执行逻辑，是由状态值所决定的。如果状态不满足，即使被 notify 了，也会再次进入 wait

set。

4、总结

本节首先简单介绍了同步的概念，然后讲解了如何通过 wait 和 notify 实现多线程间的沟通和协调。讲了这么多，

其实不如写一写代码，更容易理解。在下节中我们将采用生产者 / 消费者模式，来开发一个多位老师留作业，多个

学生一起完成的作业的程序。届时，我们本节学习的内容都会被使用上。

}

	1. wait/notify 概念
	2、同步
	3、使用 wait/notify
	4、总结

