
更新时间：2019-10-03 12:02:15

11 眼见不实—可见性

本节介绍并发三大特性的可见性。并发编程路上可谓困难重重。不过没有关系，道高一尺，魔高一丈。我们现在讲

解的所有问题，都有能降伏住他的武器。但要想做常胜将军，那就要做到知己知彼。我们只要搞清楚有哪些问题，

问题的根本原因是什么，困难才会迎刃而解。

由于我们的程序在绝大多数情况下是单线程运行的，另外即使是多线程，如果对象是无状态的，也不会有线程安全

的问题。所以 JVM 更多会考虑单线程的需求。这也就造就了多线程程序在共享资源访的访问上存在问题。比如本

节所讨论的可见性。

1. 什么是可见性

可见性指的是，某个线程对共享变量进行了修改，其它线程能够立刻看到修改后的最新值。乍一听这个定义，你可

能会觉得这不是废话吗？变量被修改了，线程当然能够立刻读取到！否则即使单线程的程序也会出问题啊！没错，

变量被修改后，在本线程中确实能够立刻被看到，但并不保证别的线程会立刻看到。原因就是编程领域经典的两大

难题之一----缓存一致性。

我们看一个例子，代码如下:

人生的价值，并不是用时间，而是用深度去衡量的。

——列夫·托尔斯泰

file:///read/49/article/945
file:///read/49/article/947


这段代码很简单，ShowVisibility 实现 Runnable 接口，在 run 方法中判断成员变量 flag 值为 true 时进行打印。

main 方法中通过 showVisibility 对象启动一个线程。主线程等待 0.5 秒后，改变 showVisibility 中 flag 的值为

true。按正常思路，此时 blindThread 应该开始打印。但是，实际情况并非如此。运行此程序，输出如下：

public class visibility {
    private static class ShowVisibility implements Runnable{
        public static Object o = new Object();
        private Boolean flag = false; 
        @Override
        public void run() {
            while (true) {
                if (flag) {
                    System.out.println(Thread.currentThread().getName()+":"+flag);
                }
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        ShowVisibility showVisibility = new ShowVisibility();
        Thread blindThread = new Thread(showVisibility);
         blindThread.start();
        //给线程启动的时间
        Thread.sleep(500);
        //更新flag
        showVisibility.flag=true;
        System.out.println("flag is true, thread should print");
        Thread.sleep(1000);
        System.out.println("I have slept 1 seconds. I guess there was nothing printed ");
    }
}

flag is true, thread should print
I have slept 1 seconds. I guess there was nothing printed 



没错，flag 改为 true 后，blindThread 没有任何打印。也就是说 blindThread 并没有观察到到 flag 的值变化。为了

测试 blindThread 到底多久能看到 flag 的变化，我决定先看会电视，可是等我刷完一集《乐队的夏天》回来，还是

没有任何输出。

是不是很神奇？是不是很玄学？作为程序员，你一定碰到过怎么都找不出原因的 bug，最后归于玄学。其实作为代

码来说，不会有什么玄学。遇到的所有问题一定有其原因。只不过有些隐藏得很深，我们很难发现。或者也可能限

于自己的认知，苦苦思考也找不到答案。

回到例子的问题本身来，执行结果完全违背我们的直觉。如果是单线程程序，做了一个变量的修改，那么程序是立

即就能看到的。然而在多线程程序中并非如此。原因是 CPU 为提高计算的速度，使用了缓存。

2. CPU 缓存模型

大家一定都知道摩尔定律。根据定律，CPU 每 18 个月速度将会翻一番。CPU 的计算速度提升了，但是内存的访问

速度却没有什么大幅度的提升。这就好比一个脑瓜很聪明程序员，接到需求后很快就想好程序怎么写了。但是他的

电脑性能很差，每敲一行代码都要反应好久，导致完成编码的时间依旧很长。所以人再聪明没有用，瓶颈在计算机

的速度上。CPU 计算也是同样的道理，瓶颈出现在对内存的访问上。没关系，我们可以使用缓存啊，这已经是路人

皆知的手段了。CPU 更狠一点，用了 L1、L2、L3，一共三级缓存。其中 L1 缓存根据用途不同，还分为 L1i 和

L1d 两种缓存。如下图：



缓存的访问速度是主存的几分之一，甚至几十分之一。通过缓存，极大的提高了 CPU 计算速度。CPU 会先从主存

中复制数据到缓存，CPU 在计算的时候就可以从缓存读取数据了，在计算完成后再把数据从缓存更新回主存。这样

在计算期间，就无须访问主存了，速度大大提升。加上缓存后，CPU 的数据访问如下：

我们再回头看上文的例子。blindThread 线程启动后，就进入 while 循环中，一直进行运算，运算时把 flag 从主存

拿到了自己线程中的缓存，此后就会一直从缓存中读取 flag 的值。即便是main线程修改了 flag 的值。但是

blindThread 线程的缓存并未更新，所以取到的还一直是之前的值。导致 blindThread 线程一致也不会有输出。

3. 最低安全性

在前面的例子中，blindThread 线程读取到flag的值是之前有效的 false。但其现在已经失效了。也就是说

blindThread 读取到了失效数据。虽然线程在未做同步的时候会读取到失效值，但是起码这个值是曾经存在过的。

这称之为最低安全性。我猜你一定会问，难道线程还能读取到从来没有设置过的值吗？是的，对于 64 位类型的变

量 long 和 double，JVM 会把读写操作分解为两个 32 位的操作。如果两个线程分别去读和写，那么在读的时候，

可能写线程只修改了一个 32 位的数据。此时读线程会读取到原来数值一个 32 位的数值和新的数值一个 32 位的数

值。两个不同数值各自的一个 32 位数值合在一起会产生一个新的数值，没有任何线程设置过的数值。这就好比马

和驴各一半的基因，会生出骡子一样。此时，就违背了最低安全性。

4. 初识 volatile 关键字



 10 有福同享，有难同当—原子性 
12 什么？还有这种操作！—有序

性

要想解决可见性问题其实很简单。第一种方法就是解决一切并发问题的方法–同步。不过读和写都需要同步。

此外还有一个方法会简单很多，使用 volatile 关键字。

我们把例子中下面这行代码做一下修改。

改为：

我们再次运行。现在程序居然可以正常输出了！是不是很简单的修改？

volatile 修饰的变量，在发生变化的时候，其它线程会立刻觉察到，然后从主存中取得更新后的值。volatile 除了简

洁外，还有个好处就是它不会加锁，所以不会阻塞代码。关于 volatile 更多的知识我们后面还会做详细讲解。现在

我们只要知道他能够以轻量级的方式实现同步就可以了。

5. 总结

本节我们学习了可见性。如果不了解可见性，我们写出的并发代码，可能会出现各种违背逻辑的现象。现在我们已

经弄清了问题产生的原因以及如何去解决，所以可见性的问题也没什么可怕的。开发遇到问题时不要慌，所有的问

题都有其产生的原因，找到原因再对症下药，保准药到病除。

开发工作中，我会遇到一些同事，遇到问题后不去分析问题产生的原因，先是自己猜测，试着乱改。发现自己不能

解决后，网上搜索。找到相关帖子或文章，也不看原因是什么，直接复制粘贴代码，又是一顿试。即使这样最后解

决了问题，我想对于他来说也是毫无收获的。我们不管遇到什么难题，一定不能乱了阵脚，还是从分析问题入手。

最终解决问题一定是基于你分析出的原因。而不是靠猜测和盲目乱试。

}

private Boolean flag = false; 

private volatile Boolean flag = false; 


	1. 什么是可见性
	2. CPU 缓存模型
	3. 最低安全性
	4. 初识 volatile 关键字
	5. 总结

