
更新时间：2019-10-11 09:58:18

12 什么？还有这种操作！—有序性

前面我们学习了原子性和可见性。相比较而言，可见性更难理解一点，但是由于缓存已经在日常编程中大量被使

用，我们并不陌生，所以理解起来也没什么难度。不过本节要讲的有序性，我们之前并没有接触过相关的知识，理

解起来会比较抽象。

1. 什么是有序性

有序性指的是代码在运行期间保证按照编写的顺序。这句话看起来和可见性的定义一样，好像又是一句废话。你一

定在想，代码当然是按照编写顺序执行的，否则那还不乱套了？其实并不是这样，代码执行的顺序还真不一定和你

编写的顺序一致。多线程开发复杂就复杂在和我们的认知相违背，我们如果在做多线程开发前不一一搞清楚，那么

所编写出的并发代码一定是漏洞百出。

2. 指令重排序

说到有序性，我们一定会提到指令重排序。CPU 为了提高运行效率，可能会对编译后代码的指令做一些优化，这些

优化不能保证 100% 符合你编写代码在正常编译后的顺序执行。但是一定能保证代码执行的结果和按照编写顺序执

行的结果是一致的。

指令重排序并不是毫无约束的随意改变代码执行顺序，而是需要符合指令间的依赖关系，否则会造成程序执行结果

错误。

我们接下来通过一个例子来理解指令重排序的必要性。

理想必须要人们去实现它，它不但需要决心和勇敢而且需要知识。

——吴玉章

file:///read/49/article/946
file:///read/49/article/948

星期六早上，你要去超市进行采购，你自己想买两斤小龙虾，你儿子和你说要一袋巧克力，然后你老婆说家里没有

酱油了买一瓶，你妈又说买两根胡萝卜。那么你到了超市会死板的按照小龙虾、巧克力、酱油、胡萝卜的顺序去采

购吗？当然不会，你肯定会大致规划好路线，从离超市入口最近的货架开始采购，避免走回头路。不管你采购的顺

序如何，最终你肯定会保证所有人给你的需求全部实现。CPU 也是如此，虽然是机器，但它也会规划更为合理的执

行方式，确保程序运行正确的情况下，提高效率。

我们再来看一个不能重排序的例子。还是去超市采购，你妈和你说，如果买不到西葫芦，才买胡萝卜。那么买西葫

芦和胡萝卜这两个步骤就不能改变。否则假如我们先去了胡萝卜货架，发现自己没买到西葫芦，就会买胡萝卜，然

后又执行了买西葫芦。最后的结果就是错误的 ---- 我们既买了西葫芦也买了胡萝卜。

指令重排序的优化，仅仅对单线程程序确保安全。如果在并发的情况下，程序没能保证有序性，程序的执行结果往

往会出乎我们的意料。另外注意，指令重排序，并不是代码重排序。我们的代码被编译后，一行代码可能会对应多

条指令，所以指令重排序更为细粒度。

3. 单例实现遇到的有序性问题

我们在实现单例的时候，有一种方式叫做双重判断。首先判断 instance 是不是为空，如果为空进入同步代码块初始

化 instance，否而直接返回 instance。初始化 instance 时再次判断 instance 是否为空，避免了在进入同步代码块这

段时间有线程抢先一步完成了 instance 初始化。代码如下：

这种单例的实现方式，看似在提高效率的同时，做到了天衣无缝。其实不然，因为 instance = new Singleton (); 这

一行代码会被编译为三条指令，正常指令顺序如下：

1. 为 instance 分配一块内存 A

2. 在分配的内存 A 上初始化 instance 实例

3. 把内存 A 的地址赋值给 instance 变量

而编译器优化后可能会变成：

1. 为 instance 分配一块内存 A

2. 把内存 A 的地址赋值给 instance 变量

3. 在分配的内存 A 上初始化 instance 实例

可以看出在优化后第 2 和第 3 步调换了位置。调换后单线程运行是没有问题的。但是换做多线程，假如线程 A 正

在初始化 instance，此时执行完第 2 步，正在执行第三步。而线程 B 执行到 if (instance == null) 的判断，那么线程

B 就会直接得到未初始化好的 instance，而此时线程 B 使用此 instance 显然是有问题的。

public class Singleton {
 private static Singleton instance;
 private Singleton (){}

 public static Singleton getSingleton() {
 if (instance == null) {
 synchronized (Singleton.class) {
 if (instance == null) {
 instance = new Singleton();
 }
 }
 }
 return instance;
 }

}

 11 眼见不实—可见性 
13 问题的根源—Java内存模型简

介

要解决本例的有序性问题很简单，我们只需要为 instance 声明时增加 volatile 关键字，volatile 修饰的变量是会保证

读操作一定能读到写完的值。

总结

有序性是在多线程的情况下，确保 CPU 不对我们需要保证顺序性的代码进行重排序的。我们可以通过 sychronized

或者 volatile 来确保有序性。至此，关于多线程的三大特性已经学习完成。我们在多线程开发过程中要牢记原子

性、可见性、有序性。千万不要以写单线程程序的思路来开发多线程，处理好这三大特性，多线程开发的大部分问

题都会得以解决。下一节我们会来学习 Java 内存模型，其实所有的线程安全性都来自于它。

}

	1. 什么是有序性
	2. 指令重排序
	3. 单例实现遇到的有序性问题
	总结

