
更新时间：2019-10-24 11:50:40

17 资源有限，请排队等候—Synchronized使用、原理及缺陷

到现在为止，本专栏已经发布了近一半的内容。我还记得早在第三节就有同学留言预测下一节要讲synchronized。

确实，很多讲解Java并发编程的书籍会比较早的安排讲解 synchronized 关键字。其实synchronized 使用起来非常简

单，并且几乎不用做什么思考，需要确保线程安全的部分直接用就好了。所以我觉得只是使用的话没什么好讲的，

随着其它内容一并介绍下就可以了。在介绍了并发的三大特性，顺便学习完Atomic 和 volatile 后，再深入学习

synchronized。我认为这样的安排更能帮助读者理解。

1、synchronized 的作用

前两节我们学习了能保证原子性的 Atomic 变量以及保证可见性和有序性的 volatile 关键字。这两种方式是轻量级的

同步方式，不过存在其局限性，前面已经做过总结。那么“重量级”的同步如何做呢？synchronized 代码块就是一种

实现方式。在 synchronized 代码块中的代码在多线程中会同步执行，同步执行的意思就是——排队。这就像我们去

体检，每个人可以并行从家里到医院，并行拿表、填表，并行走到各个检查室门口。但是，一旦要做检查了，我们

就需要在检查室门口排队。这是因为只有一个大夫做检查，大夫是共享资源。对共享资源的访问我们要保证同步，

否则就会出现问题。

synchronized 作用域中的代码为同步执行的，也就是并发的情况下，执行到对同一个对象加锁的 synchronized 代码

块时，为串行执行的。这里注意，并不是同一个同步代码块，而是对同一个对象上锁的同步代码块。这意味着范围

更广。此外 synchronized 可以确保可见性，在一个线程执行完 synchronized 代码后，所有代码中对变量值的变化

都能立即被其它线程所看到。

人生的旅途，前途很远，也很暗。然而不要怕，不怕的人的面前才有路。

—— 鲁 迅

file:///read/49/article/951
file:///read/49/article/953

由于 synchronized 关键字会使得代码串行执行，这就丧失了多线程的优势。并且 synchronized 关键字的使用也有

相应成本。所以我们代码中能不用 synchronized 就不用。当不得不用的时候，需要尽量控制 synchronized 代码块

中的代码行数。这就像高速公路上，本来三车道，所有车辆开得很快，但是突然遇到检查点，车辆只能一辆一辆通

过，那么速度一下就慢了下来，必然造成堵车。我们应该尽量减少这种人为堵点。

2、synchronized 的使用

synchronized 的使用非常简单，有两种方式，第一种是同步代码块。

我们拿之前例子的代码片段回顾下：

synchronized (tasks) {
 if (tasks.size() > 0) {
 task = tasks.removeFirst();
 sleep(100);
 tasks.notifyAll();
 } else {
 tasks.wait();
 }
}

synchronized (tasks) {
 if (tasks.size() < MAX) {
 Task task = new Task(new Random().nextInt(3) + 1, getPunishedWord());
 tasks.addLast(task);
 System.out.println(threadName + "留了作业，抄写" + task.getWordToCopy() + " " + task.getLeftCopyCount() + "次");
 tasks.notifyAll();
 } else {
 System.out.println(threadName+"开始等待");
 tasks.wait();
 System.out.println("teacher线程 " + threadName + "线程-" + name + "等待结束");
 }
}

这是生产者/消费者那一节的部分代码。第一段是学生写作业的代码，第二段是老师留作业的代码。可以看到

synchronized 的使用很简单，把你需要同步的代码放入 synchronized 关键字后面的大括号中即可。

另外你肯定注意到 synchronized (tasks) ，这行代码小括号里的 tasks 对象。为什么要这么写呢？这是和

synchronized 实现的方式相关的。你是不是心里在想：这个对象一定是被加锁的对象，加了锁之后，别的线程就不

能对该对象访问了。这里理解起来好像非常的自然。其实并不是这样，小括号里的对象是可以是任意的对像。之前

我们讲解过这一点，这个对象相当于是同步代码块的看门人，每个对其 synchronized 的线程，它都会记录下来，然

后等到同步代码块没有线程执行的时候，它就会通知其它线程来执行同步代码块。

所以我们并不是对此对象加锁，只是让它来维护秩序。这个人是谁其实并无所谓。但是我们的例子中，并发的线程

并不是同样类型的 Thread，一个是 Student，还一个是 Teacher。对于不同对象的同步控制，一定要选用两个线程

都持有的对象才行。否则各自使用不同的对象，相当于聘用了两个看门人，各看各的门，毫无瓜葛。那么原本想要

串行执行的代码仍旧会并行执行。

第二种，使用 synchronized 关键字修饰方法：

你是不是会好奇，这里没有锁对象，是如何加锁的呢？其实同步方法的锁对象就是 this。这和下面代码把方法中代

码全部用 synchronized(this) 括起来的效果是一样的：

如果是 synchroinized 的是静态方法，如下面代码：

此时同步方法为类的 Class 对象。如果上述静态方法所在的类为 Test。那么锁对象就是 Test.class。

构造方法是不能使用 synchronized 关键字修饰的。因为同步的构造方法是讲不通的，对于一个指定的对象，它只会

有唯一的创建线程，所以不需要使用 synchroinzied 修饰。

下面是 synchronized 的使用总结：

1、选用一个锁对象，可以是任意对象；

2、锁对象锁的是同步代码块，并不是自己；

3、不同类型的多个 Thread 如果有代码要同步执行，锁对象要使用所有线程共同持有的同一个对象；

public synchronized void eat(){

}

public void eat(){
 synchronized(this){

 }
}

public static synchronized void eat(){

}

4、需要同步的代码放到大括号中。需要同步的意思就是需要保证原子性、可见性、有序性中的任何一种或多种。

不要放不需要同步的代码进来，影响代码效率。

3、synchronized 原理

synchronized 的秘密其实都在同步对象上。就像上文所说，这个对象就是一个看门人，每次只允许一个线程进来，

进门后此线程可以做任何自己想做的事情，然后再出来。此时看门人会吼一嗓子：没人了，可以进来啦！其它线程

听到吼声，马上都冲了过来。但总有个敏捷值最高的线程先冲入门内，那么其它线程只好继续等待。

其实 synchronized 原理基本和上面的例子一样。下面我们真正来看看其实现原理是什么。相信如果你看懂了上面的

例子，对 synchronized 原理的理解不会有任何难度。

我们一直说的同步对象，其实就是任何一个普通的对象。那么一个普通的java对象是如何来做同步这件事的呢？这

是因为每个对象都关联了一个 monitor lock。

当一个线程获取了 monitor lock 后，其它线程如果运行到获取同一个 monitor 的时候就会被 block 住。当这个线程

执行完同步代码，则会释放 monitor lock。在后一个线程获取锁后，happens-before 原则生效，前一个线程所做的

任何修改都会被这个线程看到。

我们再深入底层一点来分析。每个 Java 对象在 JVM 的对等对象的头中保存锁状态，指向 ObjectMonitor。

ObjectMonitor 保存了当前持有锁的线程引用，EntryList 中保存目前等待获取锁的线程，WaitSet 保存 wait 的线

程。此外还有一个计数器，每当线程获得 monitor 锁，计数器 +1，当线程重入此锁时，计数器还会 +1。当计数器

不为0时，其它尝试获取 monitor 锁的线程将会被保存到EntryList中，并被阻塞。当持有锁的线程释放了monitor 锁

后，计数器 -1。当计数器归位为 0 时，所有 EntryList 中的线程会尝试去获取锁，但只会有一个线程会成功，没有

成功的线程仍旧保存在 EntryList 中。由此可以看出 monitor 锁是非公平锁。

我们看一下前面例子中 Student 类编译之后的汇编指令。或者你也可以自己写一段简单的带有 synchronized 关键字

的代码。先将其编译为.class 文件，然后使用 javap -c xxx.class 进行反汇编。我们就可以得到 java 代码对应的汇

编指令。里面可以找到如下两行指令。

这两条指令就是上面所讲述的获取锁和释放锁的关键指令。我看过使用 zookeepe r实现分布式锁的 Curator 框架源

代码，Curator 的互斥锁和 monitor 锁在原理上一模一样。

4、synchronized 使用注意

1. synchronized 使用的为非公平锁，如果你需要公平锁，那么不要使用 synchronized。可以使用 ReentrantLock，

设置为公平锁。关于 ReentrantLock，会在后面章节进行讲解；

2. 锁对象不能为 null。如果锁对象为 null，何谈对象头，以及保存与其关联的 monitor 锁呢？所以代码中要确保

synchronized使用的锁对象不为 null；

3. 只把需要同步的代码放入 synchronized 代码块。如果不思考，为了线程安全把方法中全部代码都放入同步代码

块，那么将会丧失多线程的优势。再多的线程也只能串行执行，这完全违背了并发的初衷；

4. 只有使用同一个对象作为锁对象，才能同步。记住是同一个对象，而不是同一个类。有一种常犯的错误是，不同

......
15: monitorenter
......
128: monitorexit
......

 16 让你眼见为实—volatile详解 
18 线程作用域内共享变量—深入

解析ThreadLocal

线程持有的是同一个类的不同实例。那么该对象实例用作锁对象的话，多个线程并不会同步。还一种错误是使用

不同类的实例作为锁对象，但是期望不同位置的同步代码块能够同步执行。这是不可能达到你想要的效果的。

5、总结

本节我们学习了Java多线程领域使用最多的同步方式 synchronized 关键字。synchronized 使用方便简单，但是一定

注意其作用范围不要过大。另外 synchronized 也有其局限性。我们在后面会学习到 Lock 接口及其实现，可以解决

synchronized 存在的问题。

}

	1、synchronized 的作用
	2、synchronized 的使用
	3、synchronized 原理
	4、synchronized 使用注意
	5、总结

