
更新时间：2019-10-31 10:26:12

19 自己动手丰衣足食—简单线程池实现

专栏写到这里，已经完成了前四章的内容。前四章主要围绕线程基础概念在做讲解。比如如何创建线程，多线程并

发的问题等等。从本章开始我们会开始讲解 JDK 提供给我们的并发工具类，我们在做多线程开发时经常会借助这

些工具类，不但节省了工作量，而且程序也更为健壮。

1、创建线程的问题

并发的本质其实就是任务的并行处理。绝大多数的并发程序都是围绕离散的任务执行来进行构建。我们在设计此类

多线程程序时，首要任务就是对任务进行划分，使得各个不同类型的任务之间相互独立，没有依赖。这样我们就可

以并行处理任意的任务。基于我们之前所学习的知识，我们可以为每一个任务建立一个线程来执行。不过我们知道

电脑的资源是有限的，无止境的创建线程，性能并不会一直提升，反而会达到峰值后开始衰减。为每个任务都去创

建线程存在如下的问题：

1. 线程创建需要消耗资源。通过前面的学习，我们知道线程的创建和启动都需要消耗资源，需要 JVM 和操作系统

提供支持。如果线程运行的任务十分轻量级，那么会造成创建线程的时间开销比任务逻辑运行时间还要长；

2. CPU 性能有限。当活跃的线程超过了 CPU 的承载限度，那么会有大量线程参与竞争 CPU，造成系统额外的开

销，但是永远都会有很多线程无法竞争到 CPU，造成了资源的浪费；

3. 系统能够支持的线程存在上限。如果超出上限，整个应用就会崩溃。

那么有没有一种方法，既能得到多线程的好处，又能避免以上的问题呢？

2、线程池简介

学习要注意到细处，不是粗枝大叶的，这样可以逐步学习、摸索，找到客观规律。

—— 徐特立

file:///read/49/article/953
file:///read/49/article/955

说了那么多，其实答案你肯定已经知道，那就是线程池。线程池的作用是维护一定数量的线程，接收任意数量的任

务，这些任务被线程池中的线程并发执行。看到这是不是很像前面讲道德生产者 / 消费者模式？没错，线程池就是

基于生产者 / 消费者模式来实现的。客户端调用线程池暴露的方法，向任务列表中生产任务，而线程池中的线程并

发消费任务，执行任务的逻辑。

Java 提供了 Excutor 来实现线程池。不过为了加深对线程池的理解，本节我们先不介绍 Excutor，而是自己动手来

实现一个线程池。

3、自开发线程池设计

接下来我们将开发一个简单的线程池程序 MyExecutor。正如前文所述，我们的线程池基于生产者 / 消费者模式设

计。线程池中维护一个任务对列，线程池接收到的任务放入此队列中。另外还有一个线程队列，其实就是消费者队

列，会轮询取得任务队列中的任务，进行执行。如下图所示。

MyExecutor 持有任务队列 RunnableTaskQueue 及固定数量的线程。客户端调用 MyExecutor 对外暴露的 execute

方法，像 RunnableTaskQueue 中添加任务。而 MyExecutor 维护的每个 Thread，其实只做一件事情 —— 不断从

RunnableTaskQueue 中取得 Runable 的实现，调用其 run 方法。run 方法的逻辑就是要执行的任务。而

RunnableTaskQueue 一旦任务被取完，就会开始 wait，线程阻塞。而一旦有新的任务被客户端添加进来，线程池

中线程则被唤醒继续拉取任务并执行。如下图所示：

我们实现的这个简单的线程池主要有两个类

1. MyExecutor；

2. RunnableTaskQueue 。

另外还有个测试用的 Client 类。我们逐一讲解。

3.1 RunnableTaskQueue

先看 RunnableTaskQueue 类。这个类中维护了一个 Runnable 实现对象的 LinkedList。并且提供线程安全的 add 和

get 方法，用来添加任务和获取任务。利用 LinkedList 的特性，在获取任务的同时会从队列中移除。代码如下：

RunnableTaskQueue 是一个阻塞队列，这保证了线程池中的线程能够不断从中取得任务执行，没有任务时线程也

能停下来等待。getTask 和 setTask 都会以同步的方式执行，确保线程安全，并且采用 wait 和 nofityAll 的方式让

线程在一定条件下等待和继续运行。

3.2 MyExecutor

接下来我们看 MyExecutor 代码：

public class RunnableTaskQueue {
 private final LinkedList<Runnable> tasks = new LinkedList<>();

 public Runnable getTask() throws InterruptedException {
 synchronized (tasks) {
 while (tasks.isEmpty()) {
 System.out.println(Thread.currentThread().getName() + " says task queue is empty. i will wait");
 tasks.wait();
 }
 return tasks.removeFirst();
 }
 }

 public void addTask(Runnable runnable) {
 synchronized (tasks) {
 tasks.add(runnable);
 tasks.notifyAll();
 }
 }
}

poolSize 是线程池的容量，在 MyExecutor 的构造函数中，我们会创建 poolSize 个 Thread。创建 Thread 的方法为

initThread。此方法中先比较已有线程数量是否达到 poolSize。未达到的话，则创建 thread，并且提供 run 的逻

辑。这里采用 lambda 表达式的方式，传入 runnable。可以看到线程的 run 方法很简单，就是不断从

runnableTaskQueue 中取得 task，然后运行 task 的 run 方法。回忆下刚刚讲过的 runnableTaskQueue 的 getTask

方法，在没有 task 的时候，会让此线程陷入等待中。

execute 方法是对外暴露的执行任务的方法，方法中向 runnableTaskQueue 添加 task。addTask 方法中，在添加完

task 后，会 nofity 所有等待 task 的线程。

是不是很丝滑，getTask 时可能触发 wait，而一旦 addTask 则会 notifyAll。这一来一往，线程池就能顺畅地工作起

来。

3.3 运行你的线程池

方式一：

接下来我们看看客户端代码，对我们刚刚编写线程池做一下测试。我们看下面客户端的代码：

public class MyExecutor {
 private final int poolSize;

 private final RunnableTaskQueue runnableTaskQueue;

 private final List<Thread> threads = new ArrayList<>();

 public MyExecutor(int poolSize) {
 this.poolSize = poolSize;
 this.runnableTaskQueue = new RunnableTaskQueue();
 Stream.iterate(1, item -> item + 1).limit(poolSize).forEach(item -> {
 initThread();
 });
 }

 private void initThread() {
 if (threads.size() <= poolSize) {
 Thread thread = new Thread(() -> {
 while (true) {
 try {
 Runnable task = runnableTaskQueue.getTask();
 task.run();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 });
 threads.add(thread);
 thread.start();
 }
 }

 public void execute(Runnable runnable) {
 runnableTaskQueue.addTask(runnable);
 }
}

首先我们声明了一个 5 个线程的线程池。然后以 lambda 形式向线程池添加了 10 个任务。任务的内容很简单，只

是打印执行任务线程的名称，然后 sleep 2 毫秒就结束了。这里大家可以先自己思考下程序运行的结果，再看下面

的程序输出：

以上输出是和程序执行过程保持一致的。下面我们分析下程序执行过程。

1、首先声明 5 个线程的线程池后，这 5 个线程会立即启动，然后从 RunnableTaskQueue 中 getTask；

2、由于还没有添加任务，所以 5 个线程全部开始 wait；

3、然后 10 个任务几乎同时被添加进线程池；

4、每添加一个 task，就会触发 task.notifyAll ()。使得所有线程从从 task 的 waitSet 中被弹出；

5、其中一个线程会取得锁，进入同步的 getTask 方法中获取一个 task；

6、获取 task 后释放锁；

7、执行这个 task 的 run 方法；

public class Client {
 public static void main(String[] args) {
 MyExecutor executor = new MyExecutor(5);

 Stream.iterate(1, item -> item + 1).limit(10).forEach(
 item -> {
 executor.execute(() -> {
 try {
 System.out.println(Thread.currentThread().getName() + " execute this task");
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 });
 }
);
 }
}

Thread-0 says task queue is empty. i will wait
Thread-2 says task queue is empty. i will wait
Thread-1 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait
Thread-4 says task queue is empty. i will wait
Thread-4 execute this task
Thread-3 execute this task
Thread-0 execute this task
Thread-2 execute this task
Thread-1 execute this task
Thread-4 execute this task
Thread-0 execute this task
Thread-3 execute this task
Thread-2 execute this task
Thread-1 execute this task
Thread-2 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait
Thread-0 says task queue is empty. i will wait
Thread-1 says task queue is empty. i will wait
Thread-4 says task queue is empty. i will wait

8、与此同时其他某个线程会获得锁，然后从 RunnableTaskQueue 获取任务。由于 10 个任务几乎同时被添加进

来，所以 RunnableTaskQueue 中此时还有 9 个 task，第二个线程也可以顺利拿到 task。以此类推 5 个线程都能顺

利取得 task 执行；

9、第一轮执行完毕后，RunnableTaskQueue 中还剩 5 个 task。于是 5 个线程在第二轮中又各自成功取得一个

task 执行；

10、当 5 个线程第三轮再去 getTask 时，发现 RunnableTaskQueue 已经没有任务了，所以 5 个线程全部开始

wait。

以上分析的执行过程和我们的输出完全吻合。

下面我们换一种执行方式。

方式二：

和方式一的区别是，客户端在 2 的整数倍时，sleep2 毫秒再创建。另外任务中不再 sleep。这样会造成生产得慢，

消费得快，我们看下程序输出：

public class Client {
 public static void main(String[] args) {
 MyExecutor executor = new MyExecutor(5);

 Stream.iterate(1, item -> item + 1).limit(10).forEach(
 item -> {
 try {
 if(item%2==0){
 TimeUnit.SECONDS.sleep(2);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 executor.execute(() -> {
 System.out.println(Thread.currentThread().getName() + " execute this task");

 });
 }
);
 }
}


18 线程作用域内共享变量—深入
解析ThreadLocal 

20 其实不用造轮子—Executor框
架详解

可以看到由于消费得快，每产生一个 task 会被迅速消费掉，所以绝大多是时间，大多睡线程都在 wait。另外我们

注意看除了第一个 task 和最后一个 task，中间的 task 基本上都是成对被执行的，这是因为双数的任务被添加前要

sleep 2 毫秒，而单数 task 会被立即创建，这就造成双数的 task 产生和上一个 task 有时间间隔。10 个 task 就像

被分成了 5 组，分别是 1、2 和 3、4 和 5、6 和 7、8 和 9、10。所以会呈现以上日志中的情况。

4、总结

本节我们自己实现了一个很简单的线程池，提供了非常有限的功能，并且线程池是固定大小。不过这已经足以体会

线程池设计的核心思想。就是以固定数量的线程来轮询执行任务队列中的任务。有了这一节的学习，我相信下一节

学习 JDK 提供的 Excutor 不会有任何障碍。

}

Thread-0 says task queue is empty. i will wait
Thread-2 says task queue is empty. i will wait
Thread-1 says task queue is empty. i will wait
Thread-4 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait
Thread-3 execute this task
Thread-4 says task queue is empty. i will wait
Thread-1 says task queue is empty. i will wait
Thread-2 says task queue is empty. i will wait
Thread-0 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait
Thread-3 execute this task
Thread-2 says task queue is empty. i will wait
Thread-0 execute this task
Thread-1 says task queue is empty. i will wait
Thread-4 says task queue is empty. i will wait
Thread-0 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait
Thread-3 execute this task
Thread-0 execute this task
Thread-4 says task queue is empty. i will wait
Thread-1 says task queue is empty. i will wait
Thread-2 says task queue is empty. i will wait
Thread-0 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait
Thread-3 execute this task
Thread-2 says task queue is empty. i will wait
Thread-0 execute this task
Thread-1 says task queue is empty. i will wait
Thread-4 says task queue is empty. i will wait
Thread-0 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait
Thread-3 execute this task
Thread-4 says task queue is empty. i will wait
Thread-0 execute this task
Thread-1 says task queue is empty. i will wait
Thread-2 says task queue is empty. i will wait
Thread-0 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait
Thread-3 execute this task
Thread-0 says task queue is empty. i will wait
Thread-2 says task queue is empty. i will wait
Thread-1 says task queue is empty. i will wait
Thread-4 says task queue is empty. i will wait
Thread-3 says task queue is empty. i will wait

	1、创建线程的问题
	2、线程池简介
	3、自开发线程池设计
	3.1 RunnableTaskQueue
	3.2 MyExecutor
	3.3 运行你的线程池

	4、总结

