20 H sz A H i # -+ —ExecutortE 42 7 fi#

g1 2019-11-05 10:29:05

’
\ 'y

ANH— LR REMRE B AT BB A, RASRENE AT, RIS bRk !
—— BRI A

RN T LRI T AN AR R AR AR, Hsz JDK S NIRRT UREE 5 &S TR, AR
K223 —F JDK Hr)£k fEith—Executor HEZY,

1. Executor HEZ2 [¥) 1% F
FAE S KEE Executor HELLZ UM SZH A . B TS :

public class Client {
public static Executor executor = Executors.newFixedThreadPool(10);

public static void main(String[] args) {
Stream.iterate(1, item -> item + 1).limit(20).forEach(item -> {
executor.execute(() -> {
System.out.printin(Thread.currentThread().getName() + " hello!");

] LUE BI7E A _EAERATE SRR LB R, ORI TE A Executor MU, #A B new XT4.
1M 4238 13 Executors) #4575 12 newFixedThreadPool k617 Executor.

AT ST 7 U AT A SSLBU— 4. #Z UM executor Jrik, &\ Runnable 4 I SEHL, A2
IBATHIZHE . A E RN SR B A RATSEIL N —FEIE ? el &, Al — rim IR

file:///read/49/article/954
file:///read/49/article/956

2. Executor HEZ2 %1t/

A 145K T ExecutorHE 22 1 4k & 5% £ :

I Executor

T

I ExecutorService

T

€l = AbstractExecutorService I ScheduledExecutorService

’_1‘ ‘f_‘ 4
c ForkJeinPool c ThreadPoolExecutor

S

c ScheduledThreadPoolExecutor

1. Executor

" LA RIRTZZ& Executor HIHEIT ., XANMEORMH, HAE— execute J5ik. ORI BN THAESIRERL
FUE AT IR

2. ExecutorService

XL —ANMED, 46K H Executor, B3 T Executor #:1, &N T L LU IS ERE .

3. AbstractExecutorService

32t 7 ExecutorService 1135 BRI\ SZIR .

4. ThreadPoolExecutor

SEBR B FRAE A A SE P2 ThreadPoolExecutor. ‘& SEHL 1 ARl CAE) e ML . B2 AT R
H RN R .

5. ForkJoinPool

Sl Fork/Join AR, Ja i A/NTE Tl ATTAMIRA DT

6. ScheduledExecutorService

XA O3 T ExecutorService, 5E XN AEIR AT S IATAT 55 1 7 v

7. ScheduledThreadPoolExecutor

JFE 102 4 4k 7 ThreadPoolExecutor 5% F Szl ScheduledExecutorService 12171, $ ke 5 F & TR %
R

Executors

Executor HEZLILIRML Executors X %. JEEEX MM S Executor #OJFHN 74 s, BEXAH, ANEHIRE.
Executors /& —/ L) KT H, 4L T #lin newFixedThreadPool(10) 151, KEIE & FIASFE K Executor.

3. Executor HEZ2 Y5 43 M7

Executor Wi RS L L . A% Executor #EZEHIEAL 43 #T LA ThreadPoolExecutor 1 8EZk, HEMNE
WEHR N, ANiEREIIIVEE A, SIS 7 EL,

3.1 Executor

AR

Executor
execute(Runnable command

IR, OB TR MR R,
3.2 ExecutorService

ExecutorService & X T ZFEME BAE ZHATES I T51E, WR:

I ExecutorService

awaitTermination(long, TimeUnit): boolean
invokeAll{Collection<? extends Callable<T=>>): List<Future<T>>
invokeAll(Collection<? extends Callable<T>>, long, TimeUnit): List<Future<T>>
invokeAny(Collection<? extends Callable<T>>): T
invokeAny(Collection<? extends Callable<T>>, long, TimeUnit): T
isShutdown(): boolean

isTerminated(): boolean

shutdown(): void

shutdownMow(): List<Runnable>

submit(Callable<T=): Future<T=>

RN RN NN NN N RN

submit(Runnable): Future<?>
submit(Runnable, T): Future<T>

PRk J LA R — T

shutdown 75 1%

21 executorService, FHEHPATELSHNATLS, CEPATHES SHHITE.

shutdownNow J5 7%

AEERFIEAEPAT MRS 5E B, AT IR o AN T IR AN RIE IEAE AT (4R 55 RERIRAT 280k o 3R 8] MORBEA HedhAT
55514

submit 75 7%

% execute J7iEIY R, £iR[El—AS Future 5t %, A ESHITS

invokeAll 75 &

PAT TS, FrEESHGR e timeout IS %, invokeAll 77 &R AT 45 A% . %71k — HiR 4R, %
A TS5 T4 U -

invokeAny 75 2
PAT TS, EE—MESBEREIE, invokeAny IR [FHZAT S MIHATEE R . HREA 578 AT 55 W H BUE
3.3 AbstractExecutorService

AT newTaskFor J7i2:%) Runnable k47 1%«

<T> RunnableFuture<T> newTaskFor(Runnable runnable, T value
FutureTask<T=>(runnable, value

B submit AS2HL, iR newTaskFor J7i%, RSN

Future<?> submit(Runnable task
task == null NullPointerException
RunnableFuture<Void> ftask = newTaskFor(task, null
execute(ftask
ftask:

iX B H#M RunnableFuture, 2N TXAINAEM A, ©SEHLT Runbale M0 K Future 10, BT LUE A LAgRAE N
execute 55, MIMRMBHESFF . WANERRIE T HATIISE 5, HpRE.

3.4 ¥Ji& ThreadPoolExecutor

FHEARATRIE L, % ThreadPoolExecutor IS #T. FATIM ThreadPoolExecutor I8 T 45

Executors.newFixedThreadPool

TG 2 2@ Executors BT J7VERAIE N, Executor 324t T £ T 7775414 ThreadPool. HSZHEAZ
F ThreadPoolExecutor #Ji& /7 1L 2 NS EUAR TR . FATTLL newFixedThreadPool 777k 451, &H— F4LHG:

ExecutorService newFixedThreadPool(int nThreads
ThreadPoolExecutor(nThreads, nThreads
OL, TimeUnit. MILLISECONDS
LinkedBlockingQueue<Runnable>

ThreadPoolExecutor #4i& 7750 T :

ThreadPoolExecutor(int corePoolSize
maximumPoolSize
keepAliveTime
TimeUnit unit
BlockingQueue<Runnable> workQueue
corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue
Executors.defaultThreadFactory(), defaultHandler

IAEIRATAT A — T newFixedThreadPool & X 7 — M4 RE I 26 Fith -

AL () n, EKEREEW N n LR, LRI R R KA . ZeFR It B L AR A
defaultTHreadFactory. *47Gikfl A Emf,] defaultHandler.

corePoolSize B ZEFEh Fi% O 2R FEdE, st R/ N dE. A8 allowCoreThreadTimeOut FIEML T, 1%
DR FEE VO P LR R — BRI .

maximumPoolSize B ZEFEi 1) KRR . 2R TLFEmE CAPACITY.. k2] CAPACITY SN 2 1) 29 ik
1. KRB TFEEBIELEREFRSHRALE —NERE TR, REWREESL, S THAL, FrolgiEib
REERERERZE 21129 KTT -1.

workQueue/Z— /1~ [HZE/ queue, A RRFLREMERITHITELS .

Executors.defaultThreadFactory(), &A1& NS, KIHHEZER T —4 DefaultThreadFactory. fXfi5 1

X
DefaultThreadFactory ThreadFactory
AtomicInteger poolNumber = Atomicinteger
ThreadGroup group
Atomicinteger threadNumber = Atomicinteger
String namePrefix
DefaultThreadFactory

SecurityManager s = System.getSecurityManager:
group = (s !=null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup
namePrefix = "pool-" +
poolNumber.getAndincrement() +
"-thread-"

Thread newThread(Runnable r
Thread t = Thread(group, r.
namePrefix + threadNumber.getAndincrement

tisDaemon
t.setDaemon
t.getPriority() != Thread. NORM_PRIORITY
t.setPriority(Thread. NORM_PRIORITY
t

HSzph RINTE T AR Thread. #%i8H new Thread %, SE6)8 kA Thread] REFEE % F . fEExecutor
th, WERFR B AT 2l ThreadFactory, 2%1E1#] new Thread k6% .

ThreadPoolExecutor H &4 > B 2 11 J& 1 «

[
* Set containing all worker threads in pool. Accessed only when
* holding mainLock.
*/
HashSet<Worker> workers = HashSet<Worker>

W ERBE AT LG H, X HashSet A& Thread. T Worker 2525k 2% Thread [t — 5343,

FATE T 3Lk, F—T ThreadPoolExecutor FIH4iE s i 744 F

public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new lllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?

null :

AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;

AUE R AR EYERIRE, IR R SRR . XRERAR G Bt , OB TR S I w5 B 2678,
TS RGE TR IR 5o

B B, FATXT ThreadPoolExecutor — [R145 # B iZ ELBGEMW T, HS2Z O MEATH S SZI e fnb & —#f
], ThreadPoolExecutor tH — ML 11513 workQueue, i&F —ANEFEMFIZK worker .

MAZIRIATE DI AIZHE, LSzl R sh LR WA workQueue HHERIUE 55 HAT R SL B L AR) i
Feo 4N RBAVEEIGERLBIEH .

3.5 ja 35 ThreadPoolExecutor

RESRTEAIZE ThreadPoolExecutor B 337 Ja shZRFEt, P4 LB FE Ml B 878 shIWe ? FRIGROZ 2028 — AT
ZIHE, R execute TN . FATKREE execute J7iE MG
public void execute(Runnable command) {

if (command == null)
throw new NullPointerException();

intc = ctl.get();
if (workerCountOf(c) < corePoolSize) {
it (addWorker(command,)
return;
¢ = ctl.get();
}

if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (I isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null,);
}
else if (laddWorker(command,)
reject(command);

VARG AT — BORBE MR R BT MR, F I SeIEIX BOGBE M RERI B UFIE T -
oy = AAE P

1. WRBITMLRESE/NT corePoolSize, 4 ZREIEH LR, HIEMHEANT command fENEH—4 task
KAT. A addWorker £ HE#&%F runState F1 workCount, LAISIET 1E7E AN N 32 F N 28 T2 I Vs 0 26 16 1) i 2 1

==y
(=1

2. B task ATEABC I RASY, FRATVSIH 75 2 E R BN T2 R Rz a0 thread (BRUA SR — RIS B 2 JA 7] HE
AEREOLI T IR RE CaE i 7o ProRNS R ARG, WRABERIE, " LE
RBAA . B A AR, TTRHTH thread;

3. WIRTCIEN task BIA queue, HBAT LLZRTRIEH thread. ARASINRIG, X2 RONEAEI oG Al el D4
ALY, PrLAEZEXA task.

DL ERFESCHIEIE. 45600, Hseman s =2
1. EHEARE corePoolSizeltf, WINFTILFEIEN core thread 44T command;

2. ¥ command Jn A\ workQueue, #RJ5F KB LIRS . WRARZ isRunning, W ER command JF Hreject
command. WIRLEREECEN 0, 4 NFHIK addWorker;

3. WL task A workQueue, %43k addWorker. {EAMEA core thread. fSEuIMZM, N reject
command C(H %A I workQueue, FTLAARTZEM queue H#Fk command)

T LA 2 execute VFEHIA% 0 T7 154 addWorker. &4114%4: 408 addWorker /5.
addWork H = ZLHAT W 12 %

1. BEHr worker %=, ARABWT:

retry:
for (;;) {
intc = ctl.get();
int rs = runStateOf(c);

/I Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;

for (;;) {

int we = workerCountOf(c);

if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;

if (compareAndincrementWorkerCount(c))
break retry;

¢ = ctl.get(); // Re-read ctl

if (runStateOf(c) !=rs)
continue retry;

/I else CAS failed due to workerCount change; retry inner loop

retry & —/Mrid, FPEHRELAGEH, continue retry HIRHiE, <BE3 retry K7 B IRIAT. WHE break retry, N
B BEAEAAR . BTCHRF)E, ThreadPoolExecutor fEURASFIZFHBECR M B YEAELE T —4 Atomic A&,
XA EIR ctle YR E RS, R RAIEEIERMPARE, HTHERE. /£l CASTT EH
AR octl, BT RE B IEER . & A RESZREIIRES, WRAMRYICEA—3, BaMKHFHEHIAT. HRA I
R PR I 4k 452 5 37 worker (%R, WAES % TA:

iE[Ofalse

Eil)
IRERET
—if

2. ¥ hn worker 2 workers f) set /. Ff H 55 worker A LR, AR WIR

workerStarted =
workerAdded =
Worker w = null

w = Worker(firstTask
Thread t = w.thread
t!=null
ReentrantLock mainLock = mainLock
mainLock.lock

/I Recheck while holding lock.
/I Back out on ThreadFactory failure or if
/I shut down before lock acquired.

rs = runStateOf(ctl.get

rs < SHUTDOWN ||
rs == SHUTDOWN && firstTask == null
t.isAlive()) // precheck that t is startable
llegalThreadStateException
workers.add(w
s = workers.size
s > largestPoolSize
largestPoolSize = s
workerAdded =

mainLock.unlock

workerAdded
t.start
workerStarted =

| workerStarted
addWorkerFailed(w

workerStarted

] LB AN work 7R EGIRIGE, XFERIIR 2 R IR R 4. WA worker BiZh, R4 AR worker H14FE
i start FTVEEATE. WERBEBhEEAH addWorkerFailed 77347 R .. I FE LGB B, X LA TR TR
KT,

ST ENX L, AT R AL,
1. ThreadPoolExecutor TE¥IIA1L)5 FH% A Ja sh G AT AT F2

2. £V execute ki A4 H addWorker iz 282, F£ HA® command i A% workQueue (U £ 48
il core E ML, MRS AN addWorker G4

3. addWorker 7 ¥Er 6@ worker, 38 B HEH LT PATITS .

FEoobh, RAREHECALIAR corePoolSize, MR 44 command JIAZ] workQueue ', ARANIAZ
workQueue 1) command F& A {a # AT W 2 BT R T Sk 8 Worker fYREACHS .

3.6 Worker

Worker % 7252, & executor T TERIT. worker #k/KH AbstractQueuedSynchronizer, Sz

Runnable.

worker H BN :

/** Thread this worker is running in. Null if factory fails. */
final Thread thread;

/** Initial task to run. Possibly null. */

Runnable firstTask;

/** Per-thread task counter */

volatile long completedTasks;

WISRAELE firstTask, #4 worker FLEFE S SN, 22647 firstTask.
VAP I

Worker(Runnable firstTask) {

setState(-1);

this firstTask = firstTask;

this.thread = getThreadFactory().newThread(this);
}

Al LLE FE5d ThreadFactory 8@ 46F%, A B new. FH X @R, HAAEFER RN, 68
thread I worker [£/ Runnable (52814 \ T thread . #4 addWork B t.start(), S2br 3g4710
& t AT/ workerffjrun 7772, worker [¥) run 5401 R

public void run() {
runWorker(this);

}

SEPRIZ AT 2 ThreadPoolExecutor] runWorker 751, RRSH1T -

final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w firstTask;
w firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly =
try {
while (task != null || (task = getTask()) = null) {
w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
wt.isInterrupted())
wt.interrupt();
try{
beforeExecute(wt, task);
Throwable thrown = null;
try{
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();

}
completedAbruptly =

} finally {
process\WorkerExit(w, completedAbruptly);

}
}

FRFEAF

1. SEHUH worker H1f firstTask, &%,

2. A firstTask, NiEA getTask J59%, M workQueue 135 Hitask;
3. REUL:

4. 4T beforeExecute. X &k, WA i EAE T IR

5. AT task.run;

6. T afterExecute. X HLEZ 7L, WA 7 EAE TSI

7. 1545 task, completedTasks++, BRiféi;

8. M FHWIE WA task Al HATIS, SHEASNE finnaly fCHSER. 1 processWorkerExit 18 i 247 worker. M
works F# %4 worker f5, W4 worker #& /N T corePoolSize, N|6)&H worker, LL4EH: corePoolSize K/
I FEEL

XA7ARHS while (task != null || (task = getTask()) != null) , #iff | worker A~ Hh I\ workQueue HHUfS task
7. getTask J7#:4: M BlockingQueue workQueue ' poll 5. take A1) task Hisk.

FXHE KT executor WA I 5 ZNZAEHAT task M FECEHHRE 7o HSIRATE CIBl AR A O
AR, HURE e — B BR LR, TF H AW ME S BASIHASAE S5 AT R LB AR iz %6 . {H72 Executor
HEZEZE B S o axti, et E i B AR 2 o WAVESLPRIT R A B Ol R3O, 1% B executor.

4\ IIEZ‘I‘ é:lgl:

AN EMG L2, FACRD et e bt . RATTE PSR N — EIUEZ DR, NSRS BT IEH
Wi R b . AELZ AT, SR RARESEMER, HEFEOLGBIAT L. SMRESEZE R
ERPFEARIE PR K T I A, AR ARREA . H52% T ThreadPoolExecutor EAF 8 75%k, ATWERA L L7
#r, Lim shutdown FI shutdownNow, KFE L2 EH T T -

	1、Executor 框架的使用
	2、Executor 框架设计简介
	3、Executor 框架源码分析
	3.1 Executor
	3.2 ExecutorService
	3.3 AbstractExecutorService
	3.4 构造ThreadPoolExecutor
	3.5 启动 ThreadPoolExecutor
	3.6 Worker

	4、总结

