
更新时间：2019-11-05 10:29:05

20 其实不用造轮子—Executor框架详解

上一节我们动手实现了一个非常简单的线程池。其实 JDK 已经为我们准备了功能丰富的线程池工具。本章我们就

来学习一下 JDK 中的线程池—Executor 框架。

1、Executor 框架的使用

我们首先来看看 Executor 框架是如何实用的。看如下代码：

可以看到在使用上和我们自己实现的线程池几乎一模一样。只不过在声明 Executor 的时候，没有直接 new 对象。

而是通过Executors的静态方法 newFixedThreadPool 来创建 Executor。

而执行任务的方式则是和我们自己实现的一模一样。都是调用 executor 方法，传入 Runnable 接口的实现，也就是

运行的逻辑。那么它的内部实现是否也和我们实现的一样呢？先别急，我们一点点展开来分析。

人的一生可能燃烧也可能腐朽，我不能腐朽，我愿意燃烧起来！

——奥斯特洛夫斯基

public class Client {
 public static Executor executor = Executors.newFixedThreadPool(10);

 public static void main(String[] args) {
 Stream.iterate(1, item -> item + 1).limit(20).forEach(item -> {
 executor.execute(() -> {
 System.out.println(Thread.currentThread().getName() + " hello!");
 });
 }
);
 }
}

file:///read/49/article/954
file:///read/49/article/956

2、Executor 框架设计简介

我们先来看下Executor框架的继承关系：

1、Executor

可以看到最顶层是 Executor 的接口。这个接口很简单，只有一个 execute 方法。此接口的目的是为了把任务提交

和任务执行解耦。

2、ExecutorService

这还是一个接口，继承自 Executor，它扩展了 Executor 接口，定义了更多线程池相关的操作。

3、AbstractExecutorService

提供了 ExecutorService 的部分默认实现。

4、ThreadPoolExecutor

实际上我们使用的线程池的实现是 ThreadPoolExecutor。它实现了线程池工作的完整机制。也是我们接下来分析的

重点对象。

5、ForkJoinPool

实现 Fork/Join 模式的线程池，后面会有小节专门讲解。本节不做深入分析。

6、ScheduledExecutorService

这个接口扩展了ExecutorService，定义个延迟执行和周期性执行任务的方法。

7、ScheduledThreadPoolExecutor

此接口则是在继承 ThreadPoolExecutor 的基础上实现 ScheduledExecutorService 接口，提供定时和周期执行任务

的特性。

Executors

Executor 框架还提供 Executors 对象。注意看这个对象比 Executor 接口后面对了个 s，要区分开，不要搞混。

Executors 是一个工厂及工具类。提供了例如 newFixedThreadPool(10) 的方法，来创建各种不同的 Executor。

3、Executor 框架源码分析

Executor 设计的类和实现比较多。本节对 Executor 框架的源码分析以 ThreadPoolExecutor 作为主线，其它的内容

也会有所提及，不过请同学们抓住重点，别偏离了主线。

3.1 Executor

代码如下：

很简单，只是为了把提交任务解耦出来。

3.2 ExecutorService

ExecutorService 定义了线程池管理和更多执行任务的方法，如下：

挑选几个重点的说一下：

shutdown 方法

终止 executorService，不再执行任务新的任务，已经执行的任务会被执行完。

shutdownNow 方法

不等待正在执行的任务完成，强行关闭。不过此方法并不保证正在执行的任务能被强行终止。返回从来没有被执行

的任务列表。

submit 方法

对 execute 方法的扩展，会返回一个 Future 对象，持有任务执行结果。

invokeAll 方法

执行一组任务，所有任务都返回或者 timeout 的时候，invokeAll 方法返回执行结果列表。该方法一旦返回结果，没

有完成的任务则被取消。

public interface Executor {
 void execute(Runnable command);
}

invokeAny 方法

执行一组任务，任意一个任务有返回时，invokeAny 返回该任务的执行结果。其余没有完成的任务则被取消。

3.3 AbstractExecutorService

提供了 newTaskFor 方法对 Runnable 进行包装：

它对 submit 的实现，就是过 newTaskFor 方法，代码如下：

这里用到的 RunnableFuture，就是为了这个功能而生，它实现了 Runbale 接口及 Future 接口。所以它可以被传入

execute方法，从而添加进任务列表。此外它还保存了执行的结果，并被返回。

3.4 构造ThreadPoolExecutor

下面才是本节的重头戏，对 ThreadPoolExecutor 的源代码分析。我们从 ThreadPoolExecutor 的创建开始。

可以看到是通过 Executors 的工厂方法来创建的，Executor 提供了多种工厂方法创建 ThreadPool。其实根本是调

用 ThreadPoolExecutor 构造方法时传入参数不同。我们以 newFixedThreadPool 方法为例，看一下代码：

ThreadPoolExecutor 构造方法如下：

现在我们可以翻一下 newFixedThreadPool 定义了一个什么样的线程池：

核心线程数量为 n，最大线程数量也为 n 的线程池。线程池中线程永远存活。线程池创建线程使用

defaultTHreadFactory。当无法创建线程时，使用 defaultHandler。

protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
 return new FutureTask<T>(runnable, value);
}

public Future<?> submit(Runnable task) {
 if (task == null) throw new NullPointerException();
 RunnableFuture<Void> ftask = newTaskFor(task, null);
 execute(ftask);
 return ftask;
}

Executors.newFixedThreadPool(10)

public static ExecutorService newFixedThreadPool(int nThreads) {
 return new ThreadPoolExecutor(nThreads, nThreads,
 0L, TimeUnit.MILLISECONDS,
 new LinkedBlockingQueue<Runnable>());
}

public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue) {
 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
 Executors.defaultThreadFactory(), defaultHandler);
}

corePoolSize 即线程池的核心线程数量，其实也是最小线程数量。不设置 allowCoreThreadTimeOut 的情况下，核

心线程数量范围内的线程一直存活。

maximumPoolSize 即线程池的最大线程数量。受限于线程池的 CAPACITY。线程池的 CAPACITY 为 2 的 29 次

方 -1。这是由于线程池把线程数量和状态保存在一个整形原子变量中。状态保存在高位，占据了两位，所以线程池

中线程数量最多到 2 的 29 次方 -1。

workQueue是一个阻塞的 queue，用来保存线程池要执行的所有任务。

Executors.defaultThreadFactory()，我们看下源代码，发现其最终返回了一个 DefaultThreadFactory。代码如

下：

其实就是规范了生成的 Thread。避免调用 new Thread 创建，导致创建出来的Thread可能存在差异。在Executor

中，对线程的创建都是通过 ThreadFactory，禁止使用 new Thread 来创建。

ThreadPoolExecutor 中还有个重要的属性：

通过注释可以看出，这个 HashSet 中存的是 Thread。而 Worker 其实就是对 Thread 的进一步封装。

我们再回过头来，看一下 ThreadPoolExecutor 的构造函数中做了什么事情：

static class DefaultThreadFactory implements ThreadFactory {
 private static final AtomicInteger poolNumber = new AtomicInteger(1);
 private final ThreadGroup group;
 private final AtomicInteger threadNumber = new AtomicInteger(1);
 private final String namePrefix;

 DefaultThreadFactory() {
 SecurityManager s = System.getSecurityManager();
 group = (s != null) ? s.getThreadGroup() :
 Thread.currentThread().getThreadGroup();
 namePrefix = "pool-" +
 poolNumber.getAndIncrement() +
 "-thread-";
 }

 public Thread newThread(Runnable r) {
 Thread t = new Thread(group, r,
 namePrefix + threadNumber.getAndIncrement(),
 0);
 if (t.isDaemon())
 t.setDaemon(false);
 if (t.getPriority() != Thread.NORM_PRIORITY)
 t.setPriority(Thread.NORM_PRIORITY);
 return t;
 }
}

/**
 * Set containing all worker threads in pool. Accessed only when
 * holding mainLock.
 */
private final HashSet<Worker> workers = new HashSet<Worker>();

可以看到只是对属性的赋值，并没有启动任何线程。这样做是很好的设计，因为没有任何任务添加时就启动线程，

是对系统资源的浪费。

通过以上分析，我们对 ThreadPoolExecutor 的结构应该比较清晰了，其实核心和我们自己实现的线程池是一样

的。ThreadPoolExecutor 也有一个任务的列表 workQueue，还有一个线程的列表 worker。

那么按照我们自己实现的逻辑，线程池应该是通过启动线程轮询从 workQueue 中获取任务执行来实现线程池的运

转。结下来我们看看猜想是否正确。

3.5 启动 ThreadPoolExecutor

既然在创建 ThreadPoolExecutor 时并没有启动线程池，那么线程池是何时被启动的呢？我猜应该是添加第一个任

务的时候，也就是调用 execute 方法时。我们来看看 execute 方法的代码：

public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler) {
 if (corePoolSize < 0 ||
 maximumPoolSize <= 0 ||
 maximumPoolSize < corePoolSize ||
 keepAliveTime < 0)
 throw new IllegalArgumentException();
 if (workQueue == null || threadFactory == null || handler == null)
 throw new NullPointerException();
 this.acc = System.getSecurityManager() == null ?
 null :
 AccessController.getContext();
 this.corePoolSize = corePoolSize;
 this.maximumPoolSize = maximumPoolSize;
 this.workQueue = workQueue;
 this.keepAliveTime = unit.toNanos(keepAliveTime);
 this.threadFactory = threadFactory;
 this.handler = handler;
}

 public void execute(Runnable command) {
 if (command == null)
 throw new NullPointerException();
 int c = ctl.get();
 if (workerCountOf(c) < corePoolSize) {
 if (addWorker(command, true))
 return;
 c = ctl.get();
 }
 if (isRunning(c) && workQueue.offer(command)) {
 int recheck = ctl.get();
 if (! isRunning(recheck) && remove(command))
 reject(command);
 else if (workerCountOf(recheck) == 0)
 addWorker(null, false);
 }
 else if (!addWorker(command, false))
 reject(command);
 }

源代码中有一段关键的注释我没有贴进来，下面我先把这段关键的注释翻译讲解下：

分三步做处理：

1、如果运行的线程数量小于 corePoolSize，那么尝试创建新的线程，并把传入的 command 作为它的第一个 task

来执行。调用 addWorker 会自动检查 runState 和 workCount，以此来防止在不应该添加线程时添加线程的错误警

告；

2、即使 task 可以被成功加入队列，我们仍旧需要再次确认我们是否应该添加 thread（因为最后一次检查之后可能

有线程已经死掉了）还是线程池在进入此方法后已经停掉了。所以我们会再次检查状态，如果有必要的话，可以回

滚队列。或者当没有线程时，开启新的 thread；

3、如果无法将 task 加入 queue，那么可以尝试添加新的 thread。如果添加失败，这是因为线程池被关闭或者已经

饱和了，所以拒绝这个 task。

以上是原文的翻译。结合代码，其实就是如下三步：

1、线程数量不足 corePoolSize时，添加新线程作为 core thread 执行 command；

2、将 command 加入 workQueue，然后再次检查线程池状态。如果不是 isRunning，则移除 command 并且reject

command。如果线程数量已经为 0，那么则再次 addWorker；

3、如果无法将 task 加入 workQueue，则尝试 addWorker。但不作为 core thread。如果添加失败，则 reject

command（由于没有加入 workQueue，所以不需要从 queue 中移除 command）。

可以看到 execute 流程的核心方法为 addWorker。我们继续分析 addWorker方法。

addWork 中主要执行如下逻辑：

1、更新 worker 的数量，代码如下：

retry 是一个标记，和循环配合使用，continue retry 的时候，会跳到 retry 的地方再次执行。如果 break retry，则

跳出整个循环体。前文提到过，ThreadPoolExecutor 把状态和线程池数量两个属性存在了一个 Atomic 变量中，就

是这里用到的 ctl。源码中先检查了状态，然后格局创建线程类型的不同，进行数量的校验。在通过 CAS方 式更新

状 ctl，成功的话则跳出循环。否则再次取得线程池状态，如果和最初已经不一致，那么从头开始执行。如果状态并

未改变则继续更新 worker 的数量。流程参考下图：

2、添加 worker 到 workers 的 set 中。并且启动 worker 中持有的线程。代码如下：

retry:
 for (;;) {
 int c = ctl.get();
 int rs = runStateOf(c);

 // Check if queue empty only if necessary.
 if (rs >= SHUTDOWN &&
 ! (rs == SHUTDOWN &&
 firstTask == null &&
 ! workQueue.isEmpty()))
 return false;

 for (;;) {
 int wc = workerCountOf(c);
 if (wc >= CAPACITY ||
 wc >= (core ? corePoolSize : maximumPoolSize))
 return false;
 if (compareAndIncrementWorkerCount(c))
 break retry;
 c = ctl.get(); // Re-read ctl
 if (runStateOf(c) != rs)
 continue retry;
 // else CAS failed due to workerCount change; retry inner loop
 }
 }

可以看到添加 work 时需要先获得锁，这样确保多线程并发安全。如果添加 worker 成功，那么调用 worker 中线程

的 start 方法启动线程。如果启动失败则调用 addWorkerFailed 方法进行回滚。过程比较简单，这里就不再提流程

图了。

分析到这里，我们先进行下总结。

1、ThreadPoolExecutor 在初始化后并没有启动和创建任何线程；

2、在调用 execute 方法时才会调用 addWorker 创建线程，并且把 command 加入到 workQueue（如果已经拥有超

过 core 数量的线程，则不会再调用 addWorker 创建线程）；

3、addWorker 方法中会创建新的 worker，并启动其持有的线程来执行任务。

第二步中，如果线程数量已经达到 corePoolSize，则只会把 command 加入到 workQueue 中，那么加入到

workQueue 中的 command 是如何被执行的呢？我们下面来分析 Worker 的源代码。

3.6 Worker

Worker 封装了线程，是 executor 中的工作单元。worker 继承自 AbstractQueuedSynchronizer，并实现

Runnable。

boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
 w = new Worker(firstTask);
 final Thread t = w.thread;
 if (t != null) {
 final ReentrantLock mainLock = this.mainLock;
 mainLock.lock();
 try {
 // Recheck while holding lock.
 // Back out on ThreadFactory failure or if
 // shut down before lock acquired.
 int rs = runStateOf(ctl.get());

 if (rs < SHUTDOWN ||
 (rs == SHUTDOWN && firstTask == null)) {
 if (t.isAlive()) // precheck that t is startable
 throw new IllegalThreadStateException();
 workers.add(w);
 int s = workers.size();
 if (s > largestPoolSize)
 largestPoolSize = s;
 workerAdded = true;
 }
 } finally {
 mainLock.unlock();
 }
 if (workerAdded) {
 t.start();
 workerStarted = true;
 }
 }
} finally {
 if (! workerStarted)
 addWorkerFailed(w);
}
return workerStarted;

worker 中的属性如下：

如果存在 firstTask，那么 worker 中线程启动时，会先执行 firstTask。

构造方法如下：

可以看到通过 ThreadFactory 创建线程，并没有直接 new。原因上文已经将结果。此处还需要特别注意的是，创建

thread 时把 worker 自己作为 Runnable 的实现传入了 thread 中。那么 addWork 时调用的 t.start()，实际上运行的

是 t 所属 worker的run 方法。worker 的 run 方法如下：

实际运行的是 ThreadPoolExecutor 的 runWorker 方法，代码如下：

/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;

Worker(Runnable firstTask) {
 setState(-1);
 this.firstTask = firstTask;
 this.thread = getThreadFactory().newThread(this);
}

public void run() {
 runWorker(this);
}

主流程如下：

1、先取出 worker 中的 firstTask，并清空；

2、如果没有 firstTask，则调用 getTask 方法，从 workQueue 中获取task；

3、获取锁；

4、执行 beforeExecute。这里是空方法，如有需要在子类实现；

5、执行 task.run；

6、执行 afterExecute。这里是空方法，如有需要在子类实现；

7、清空 task，completedTasks++，释放锁；

8、当有异常或者没有 task 可执行时，会进入外层 finnaly 代码块。调用 processWorkerExit 退出当前 worker。从

works 中移除本 worker 后，如果 worker 数量小于 corePoolSize，则创建新的 worker，以维持 corePoolSize 大小

的线程数。

 final void runWorker(Worker w) {
 Thread wt = Thread.currentThread();
 Runnable task = w.firstTask;
 w.firstTask = null;
 w.unlock(); // allow interrupts
 boolean completedAbruptly = true;
 try {
 while (task != null || (task = getTask()) != null) {
 w.lock();
 if ((runStateAtLeast(ctl.get(), STOP) ||
 (Thread.interrupted() &&
 runStateAtLeast(ctl.get(), STOP))) &&
 !wt.isInterrupted())
 wt.interrupt();
 try {
 beforeExecute(wt, task);
 Throwable thrown = null;
 try {
 task.run();
 } catch (RuntimeException x) {
 thrown = x; throw x;
 } catch (Error x) {
 thrown = x; throw x;
 } catch (Throwable x) {
 thrown = x; throw new Error(x);
 } finally {
 afterExecute(task, thrown);
 }
 } finally {
 task = null;
 w.completedTasks++;
 w.unlock();
 }
 }
 completedAbruptly = false;
 } finally {
 processWorkerExit(w, completedAbruptly);
 }
 }


19 自己动手丰衣足食—简单线程
池实现 21 更高级的锁—深入解析Lock

这行代码 while (task != null || (task = getTask()) != null) ，确保了 worker 不停地从 workQueue 中取得 task 执

行。getTask 方法会从 BlockingQueue workQueue 中 poll 或者 take 其中的 task 出来。

到这里关于 executor 如何创建并启动线程执行 task 的过程已经分析清楚了。其实和我们自己实现的线程池的核心

思想一致，都是通过维护一定数量的线程，并且不断从任务队列取得任务执行来实现线程池的运转。但是 Executor

框架考虑得更为全面，健壮性也要好很多。我们在实际开发中不要自己再去设计线程池，请直接使用 executor。

4、总结

本节的内容相对比较多，源代码阅读也比较枯燥。我们在阅读源代码时一定抓住核心流程·，从高层级逻辑开始自

顶向下分析和阅读。不要过多纠缠于细节，等到大体能够读懂时，再去看感兴趣的细节实现。否则很容易在层层嵌

套的源代码中迷失了方向，陷入某个细节不能自拔。其实关于 ThreadPoolExecutor 还有些方法，本节没有给出分

析，比如 shutdown 和 shutdownNow，大家可以尝试自己分析下。

}

	1、Executor 框架的使用
	2、Executor 框架设计简介
	3、Executor 框架源码分析
	3.1 Executor
	3.2 ExecutorService
	3.3 AbstractExecutorService
	3.4 构造ThreadPoolExecutor
	3.5 启动 ThreadPoolExecutor
	3.6 Worker

	4、总结

