
更新时间：2019-11-07 10:15:23

21 更高级的锁—深入解析Lock

前面的章节我们刚刚学习了 Java 的内置锁，也就是 synchronized 关键字的使用。在 Java 5.0 之前只有

synchronized 和 volatile 可以用来进行同步。在 Java 5.0 之后，出现了新的同步机制，也就是使用 ReentrantLock

显式的加锁。而 ReentrantLock 的诞生并不是用来取代 synchroinized。而是应该在 synchroinized 无法满足我们需

求的时候才使用 ReentrantLock。

我们生活中也是一样的，不要过分追求名牌、追求功能齐全。其实绝大多数情况下，我们选择一般的产品已经足够

用了。一个产品 80% 的功能其实在你淘汰它之前都不会用到。当然，如果你确实有需求，那么还是应该选择更为

高级的产品。

1、ReentrantLock 的使用

简单应用

ReentrantLock 的使用相比较 synchronized 会稍微繁琐一点，所谓显示锁，也就是你在代码中需要主动的去进行

lock 操作。一般来讲我们可以按照下面的方式使用 ReentrantLock。

没有智慧的头脑，就象没有腊烛的灯笼。

——列夫·托尔斯泰

Lock lock = new ReentrantLock();
lock.lock();
try {
 doSomething();
}finally {
 lock.unlock();
}

file:///read/49/article/955
file:///read/49/article/957

lock.lock () 就是在显式的上锁。上锁后，下面的代码块一定要放到 try 中，并且要结合 finally 代码块调用

lock.unlock () 来释放锁，否则一定 doSomething 方法中出现任何异常，这个锁将永远不会被释放掉。

公平锁和非公平锁

synchronized 是非公平锁，也就是说每当锁匙放的时候，所有等待锁的线程并不会按照排队顺去依次获得锁，而是

会再次去争抢锁。ReentrantLock 相比较而言更为灵活，它能够支持公平和非公平锁两种形式。只需要在声明的时

候传入 true。

而默认的无参构造方法则会创建非公平锁。

tryLock

前面我们通过 lock.lock (); 来完成加锁，此时加锁操作是阻塞的，直到获取锁才会继续向下进行。ReentrantLock

其实还有更为灵活的枷锁方式 tryLock。tryLock 方法有两个重载，第一个是无参数的 tryLock 方法，被调用后，该

方法会立即返回获取锁的情况。获取为 true，未能获取为 false。我们的代码中可以通过返回的结果进行进一步的

处理。第二个是有参数的 tryLock 方法，通过传入时间和单位，来控制等待获取锁的时长。如果超过时间未能获取

锁则放回 false，反之返回 true。使用方法如下：

我们如果不希望无法获取锁时一直等待，而是希望能够去做一些其它事情时，可以选择此方式。

2、lock 方法源码分析

我们先从 lock 方法看起。lock 方法的代码如下：

通过内置的 sync 对象加锁，那么 sync 对象是什么呢？我们来看 ReentrantLock 的无参构造函数：

有参的构造函数：

Lock lock = new ReentrantLock(true);

if(lock.tryLock(2, TimeUnit.SECONDS)){
 try {
 doSomething();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }finally {
 lock.unlock();
 }
}else{
 doSomethingElse();
}

public void lock() {
 sync.lock();
}

public ReentrantLock() {
 sync = new NonfairSync();
}

FairSync 和 NonFairSync 都继承自 Sync。它们的继承关系如下图：

都是最终继承自 AbstractQueuedSynchronizer。这就是 Java 中著名的 AQS。通过查看 AQS 的注释我们了解到，

AQS 依赖先进先出队列实现了阻塞锁和相关的同步器（信号量、事件等）。AQS 内部有一个 volatile 类型的 state

属性，实际上多线程对锁的竞争体现在对 state 值写入的竞争。一旦 state 从 0 变为 1，代表有线程已经竞争到

锁，那么其它线程则进入等待队列。等待队列是一个链表结构的 FIFO 队列，这能够确保公平锁的实现。同一线程

多次获取锁时，如果之前该线程已经持有锁，那么对 state 再次加 1。释放锁时，则会对 state-1。直到减为 0，才

意味着此线程真正释放了锁。

我们回过头来，继续跟进 sync.lock (); 的源代码。我们对代码的分析选择公平锁这条线。FairSync 实现的 lock 代

码很简单：

在 FairSync 并没有重写 acquire 方法代码。调用的为 AbstractQueuedSynchronizer 的代码，如下：

public ReentrantLock(boolean fair) {
 sync = fair ? new FairSync() : new NonfairSync();
 }

final void lock() {
 acquire(1);
}

首先调用一次 tryAcquire 方法。如果 tryAcquire 方法返回 true，那么 acquire 就会立即返回。但如果 tryAcquire 返

回了 false，那么则会先调用 addWaiter，把当前线程包装成一个等待的 node，加入到等待队列。然后调用

acquireQueued 尝试排队获取锁，如果成功后发现自己被中断过，那么返回 true，导致 selfInterrupt 被触发，这个

方里只是调用 Thread.currentThread ().interrupt (); 进行 interrupt。

acquireQueued 代码如下：

在此方法中进入自旋，不断查看自己排队的情况。如果轮到自己（ header 是已经获取锁的线程，而 header 后面的

线程是排队到要去获取锁的线程），那么调用 tryAcquire 方法去获取锁，然后把自己设置为队列的 header。在自

旋中，如果没有排队到自己，还会检查是否应该应该被中断。

整个获取锁的过程我们可以总结下：

1. 直接通过 tryAcquire 尝试获取锁，成功直接返回；

2. 如果没能获取成功，那么把自己加入等待队列；

3. 自旋查看自己的排队情况；

4. 如果排队轮到自己，那么尝试通过 tryAcquire 获取锁；

5. 如果没轮到自己，那么回到第三步查看自己的排队情况。

从以上过程我们可以看到锁的获取是通过 tryAcquire 方法。而这个方法在 FairSync 和 NonfairSync 有不同实现，

我们来分析在 FairSync 中的实现。

public final void acquire(int arg) {
 if (!tryAcquire(arg) &&
 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
 selfInterrupt();
}

final boolean acquireQueued(final Node node, int arg) {
 boolean failed = true;
 try {
 boolean interrupted = false;
 for (;;) {
 final Node p = node.predecessor();
 if (p == head && tryAcquire(arg)) {
 setHead(node);
 p.next = null; // help GC
 failed = false;
 return interrupted;
 }
 if (shouldParkAfterFailedAcquire(p, node) &&
 parkAndCheckInterrupt())
 interrupted = true;
 }
 } finally {
 if (failed)
 cancelAcquire(node);
 }
}

实际上它的实现和 NonfairSync 的实现，值是在 c==0 时，多了对 hasQueuedPredecessors 方法的调用。故名思

义，这个方法做的事情就是判断当前线程是否前面还有排队的线程。当它前面没有排队线程，说明已经排队到自己

了，这是才会通过 CAS 的的方式去改变 state 值为 1，如果成功，那么说明当前线程获取锁成功。接下来就是调用

setExclusiveOwnerThread 把自己设置成为锁的拥有者。else if 中逻辑则是在处理重入逻辑，如果当前线程就是锁

的拥有者，那么会把 state 加 1 更新回去。

通过以上分析，我们可以看出 AbstractQueuedSynchronizer 提供 acquire 方法的模板逻辑，但其中真正对锁的获取

方法 tryAcquire，是在不同子类中实现的，这是很好的设计思想。

3、unlock 方法源码分析

下面我们来分析 unlock 的源码：

和 lock 很像，实际调用的是 sync 实现类的 release 方法。和 lock 方法一样，这个 release 方法在

AbstractQueuedSynchronizer 中，

这个方法中会先执行 tryRelease，它的实现也在 AbstractQueuedSynchronizer 的子类 Sync 中，如果释放锁成功，

那么则会通过 unparkSuccessor 方法找到队列中第一个 waitStatus<0 的线程进行唤醒。我们下面看一下

tryRelease 方法代码：

 protected final boolean tryAcquire(int acquires) {
 final Thread current = Thread.currentThread();
 int c = getState();
 if (c == 0) {
 if (!hasQueuedPredecessors() &&
 compareAndSetState(0, acquires)) {
 setExclusiveOwnerThread(current);
 return true;
 }
 }
 else if (current == getExclusiveOwnerThread()) {
 int nextc = c + acquires;
 if (nextc < 0)
 throw new Error("Maximum lock count exceeded");
 setState(nextc);
 return true;
 }
 return false;
 }

public void unlock() {
 sync.release(1);
}

if (tryRelease(arg)) {
 Node h = head;
 if (h != null && h.waitStatus != 0)
 unparkSuccessor(h);
 return true;
}
return false;


20 其实不用造轮子—Executor框
架详解 

22 到底哪把锁更适合你？—
synchronized与ReentrantLock对

比

还是比较简单，释放的时候会把 state 减 1，如果减到 0，那么说明没有线程持有锁，则会设置 free=true 并且清空

锁的持有者。如果 state 值还是大于 0，这说明可重入锁还有其它线程持有，那么锁并没有被真正释放，仅仅是减

少了持有的数量，所以返回 false。

总结

本节学习了 ReentrantLock 的使用及其核心源代码，其实 Lock 相关的代码还有很多。我们可以尝试自己去阅读。

ReentrantLock 的设计思想是通过 FIFO 的队列保存等待锁的线程。通过 volatile 类型的 state 保存锁的持有数量，

从而实现了锁的可重入性。而公平锁则是通过判断自己是否排队成功，来决定是否去争抢锁。学习完本节相信你一

定会有疑问，为什么在内置锁之外又设计了 Lock 显式锁呢？下一节，我们将对这两种锁进行对比，看看各自适合

的场景。

}

 protected final boolean tryRelease(int releases) {
 int c = getState() - releases;
 if (Thread.currentThread() != getExclusiveOwnerThread())
 throw new IllegalMonitorStateException();
 boolean free = false;
 if (c == 0) {
 free = true;
 setExclusiveOwnerThread(null);
 }
 setState(c);
 return free;
 }

	1、ReentrantLock 的使用
	2、lock 方法源码分析
	3、unlock 方法源码分析
	总结

