
更新时间：2019-11-19 10:04:41

24 经典并发容器，多线程面试必备。—深入解析ConcurrentHashMap

本小节我们将学习一个经典的并发容器 ConcurrentHashMap，它在技术面试中出现的频率相当之高，所以我们必须

对它深入理解和掌握。

谈到 ConcurrentHashMap，就一定会想到 HashMap。HashMap 在我们的代码中使用频率更高，不需要考虑线程安

全的地方，我们一般都会使用 HashMap。HashMap 的实现非常经典，如果你读过 HashMap 的源代码，那么对

ConcurrentHashMap 源代码的理解会相对轻松，因为两者采用的数据结构是类似的。不过即使没读过HashMap 源

代码，也不影响本节的学习。

1、ConcurrentHashMap 原理概述

勤能补拙是良训，一分辛劳一分才。

——华罗庚

file:///read/49/article/958
javascript:;

ConcurrentHashMap 是一个存储 key/value 对的容器，并且是线程安全的。我们先看 ConcurrentHashMap 的存储

结构，如下图：

这是经典的数组加链表的形式。并且在链表长度过长时转化为红黑树存储（ Java 8 的优化），加快查找速度。

存储结构定义了容器的“形状”，那容器内的东西按照什么规则来放呢？换句话讲，某个 key 是按照什么逻辑放入容

器的对应位置呢？

我们假设要存入的 key 为对象 x，这个过程如下：

1、通过对象 x 的 hashCode() 方法获取其 hashCode；

2、将 hashCode 映射到数组的某个位置上；

3、把该元素存储到该位置的链表中。

从容器取数的逻辑如下：

1、通过对象 x 的 hashCode() 方法获取其 hashCode；

2、将 hashCode 映射到数组的某个位置上；

3、遍历该位置的链表或者从红黑树中找到匹配的对象返回。

这个数组+链表的存储结构其实是一个哈希表。把对象 x 映射到数组的某个位置的函数，叫做 hash函数。这个函数

的好坏决定元素在哈希表中分布是否均匀，如果元素都堆积在一个位置上，那么在取值时需要遍历很长的链表。但

元素如果是均匀的分布在数组中，那么链表就会较短，通过哈希函数定位位置后，能够快速找到对应的元素。具体

ConcurrentHashMap 中的哈希函数如何实现我们后面会详细讲到。

扩容

我们大致了解了ConcurrentHashMap 的存储结构，那么我们思考一个问题，当数组中保存的链表越来越多，那么再

存储进来的元素大概率会插入到现有的链表中，而不是使用数组中剩下的空位。这样会造成数组中保存的链表越来

越长，由此导致哈希表查找速度下降，从 O(1) 慢慢趋近于链表的时间复杂度 O(n/2)，这显然违背了哈希表的初

衷。所以 ConcurrentHashMap 会做一个操作，称为扩容。也就是把数组长度变大，增加更多的空位出来，最终目

的就是预防链表过长，这样查找的时间复杂度才会趋向于 O(1)。扩容的操作并不会在数组没有空位时才进行，因

为在桶位快满时，新保存元素更大的概率会命中已经使用的位置，那么可能最后几个桶位很难被使用，而链表却越

来越长了。ConcurrentHashMap 会在更合适的时机进行扩容，通常是在数组中 75% 的位置被使用时。

另外 ConcurrentHashMap 还会有链表转红黑树的操作，以提高查找的速度，红黑树时间复杂度为 O(logn)，而链表

是 O(n/2)，因此只在 O(logn)<O(n/2) 时才会进行转换，也就是以 8 作为分界点。

其实以上内容和 HashMap 类似，ConcurrentHashMap 此外提供了线程安全的保证，它主要是通过 CAS 和

Synchronized 关键字来实现，我们在源码分析中再详细来看。

我们做一下总结：

1、ConcurrentHashMap 采用数组+链表+红黑树的存储结构；

2、存入的Key值通过自己的 hashCode 映射到数组的相应位置；

3、ConcurrentHashMap 为保障查询效率，在特定的时候会对数据增加长度，这个操作叫做扩容；

4、当链表长度增加到 8 时，可能会触发链表转为红黑树（数组长度如果小于 64，优先扩容，具体看后面源码分

析）。

接下来，我们的源码分析就从 ConcurrentHashMap 的构成、保存元素、哈希算法、扩容、查找数据这几个方面来

进行。

2、ConcurrentHashMap 的构成

2.1 重要属性

我们来看看 ConcurrentHashMap 的几个重要属性

1、transient volatile Node<K,V>[] table

这个Node数组就是ConcurrentHashMap用来存储数据的哈希表。

2、private static final int DEFAULT_CAPACITY = 16;

这是默认的初始化哈希表数组大小

3、static final int TREEIFY_THRESHOLD = 8

转化为红黑树的链表长度阈值

4、static final int MOVED = -1

这个标识位用于识别扩容时正在转移数据

5、static final int HASH_BITS = 0x7fffffff;

计算哈希值时用到的参数，用来去除符号位

6、private transient volatile Node<K,V>[] nextTable;

数据转移时，新的哈希表数组

可能有些属性看完解释你还摸不到头脑。没关系，我们在后面源码分析时，具体使用的地方还会做相应讲解。

2.2 重要组成元素

Node

链表中的元素为Node对象。他是链表上的一个节点，内部存储了key、value值，以及他的下一个节点的引用。这样

一系列的Node就串成一串，组成一个链表。

ForwardingNode

当进行扩容时，要把链表迁移到新的哈希表，在做这个操作时，会在把数组中的头节点替换为ForwardingNode对

象。ForwardingNode中不保存key和value，只保存了扩容后哈希表（nextTable）的引用。此时查找相应node时，

需要去nextTable中查找。

TreeBin

当链表转为红黑树后，数组中保存的引用为 TreeBin，TreeBin 内部不保存 key/value，他保存了 TreeNode的list以

及红黑树 root。

TreeNode

红黑树的节点。

3、put 方法源码分析

put 方法用来把一个键值对存储到map中。代码如下：

实际调用的是 putVal 方法，第三个参数传入 false，控制 key 存在时覆盖原来的值。

我们接下来看 putVal 的代码，代码比较多，我把解释直接放到代码中：

public V put(K key, V value) {
 return putVal(key, value, false);
}

final V putVal(K key, V value, boolean onlyIfAbsent) {
 //key和value不能为空
 if (key == null || value == null) throw new NullPointerException();
 //计算key的hash值，后面我们会看spread方法的实现
 int hash = spread(key.hashCode());
 int binCount = 0;
 //开始自旋，table属性采取懒加载，第一次put的时候进行初始化
 for (Node<K,V>[] tab = table;;) {
 Node<K,V> f; int n, i, fh;
 //如果table未被初始化，则初始化table
 if (tab == null || (n = tab.length) == 0)
 tab = initTable();
 //通过key的hash值映射table位置，如果该位置的值为空，那么生成新的node来存储该key、value，放入此位置
 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
 if (casTabAt(tab, i, null,

 new Node<K,V>(hash, key, value, null)))
 break; // no lock when adding to empty bin
 }
 //如果该位置节点元素的hash值为MOVED，也就是-1，代表正在做扩容的复制。那么该线程参与复制工作。
 else if ((fh = f.hash) == MOVED)
 tab = helpTransfer(tab, f);
 //下面分支处理table映射的位置已经存在node的情况
 else {
 V oldVal = null;
 synchronized (f) {
 //再次确认该位置的值是否已经发生了变化
 if (tabAt(tab, i) == f) {
 //fh大于0，表示该位置存储的还是链表
 if (fh >= 0) {
 binCount = 1;
 //遍历链表
 for (Node<K,V> e = f;; ++binCount) {
 K ek;
 //如果存在一样hash值的node，那么根据onlyIfAbsent的值选择覆盖value或者不覆盖
 if (e.hash == hash &&
 ((ek = e.key) == key ||
 (ek != null && key.equals(ek)))) {
 oldVal = e.val;
 if (!onlyIfAbsent)
 e.val = value;
 break;
 }
 Node<K,V> pred = e;
 //如果找到最后一个元素，也没有找到相同hash的node，那么生成新的node存储key/value，作为尾节点放入链表。
 if ((e = e.next) == null) {
 pred.next = new Node<K,V>(hash, key,
 value, null);
 break;
 }
 }
 }
 //下面的逻辑处理链表已经转为红黑树时的key/value保存
 else if (f instanceof TreeBin) {
 Node<K,V> p;
 binCount = 2;
 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
 value)) != null) {
 oldVal = p.val;
 if (!onlyIfAbsent)
 p.val = value;
 }
 }
 }
 }
 //node保存完成后，判断链表长度是否已经超出阈值，则进行哈希表扩容或者将链表转化为红黑树
 if (binCount != 0) {
 if (binCount >= TREEIFY_THRESHOLD)
 treeifyBin(tab, i);
 if (oldVal != null)
 return oldVal;
 break;
 }
 }
 }
 //计数，并且判断哈希表中使用的桶位是否超出阈值，超出的话进行扩容
 addCount(1L, binCount);
 return null;
}

主线流程梳理如下图：

其实 put 的核心思想都在这里了。接下来我们分别看一下关键节点的方法源码。

4、spread 方法源码分析

哈希算法的逻辑，决定 ConcurrentHashMap 保存和读取速度。hash 算法是 hashmap 的核心算法，JDK 的实现十

分巧妙，值得我们学习。

spreed 方法源代码如下：

传入的参数h为 key 对象的 hashCode，spreed 方法对 hashCode 进行了加工。重新计算出 hash。我们先暂不分析

这一行代码的逻辑，先继续往下看如何使用此 hash 值。

hash 值是用来映射该 key 值在哈希表中的位置。取出哈希表中该 hash 值对应位置的代码如下。

我们先看这一行代码的逻辑，第一个参数为哈希表，第二个参数是哈希表中的数组下标。通过 (n - 1) & hash 计算

下标。n 为数组长度，我们以默认大小 16 为例，那么 n-1 = 15，我们可以假设 hash 值为 100，那么 15 & 100为

多少呢？& 把它左右数值转化为二进制，按位进行与操作，只有两个值都为 1 才为 1，有一个为 0 则为 0。那么我

们把 15 和 100 转化为二进制来计算，java中 int 类型为 8 个字节，一共 32 个bit位。

n的值15转为二进制：

static final int spread(int h) {
 return (h ̂(h >>> 16)) & HASH_BITS;
}

tabAt(tab, i = (n - 1) & hash)

0000 0000 0000 0000 0000 0000 0000 1111

hash的值100转为二进制：

0000 0000 0000 0000 0000 0000 0110 0100。

计算结果：

0000 0000 0000 0000 0000 0000 0000 0100

对应的十进制值为 4

是不是已经看出点什么了？15的二进制高位都为0，低位都是1。那么经过&计算后，hash值100的高位全部被清

零，低位则保持不变，并且一定是小于（n-1）的。也就是说经过如此计算，通过hash值得到的数组下标绝对不会

越界。

这里我提出两个问题：

1、数组大小可以为 17，或者 18 吗？

2、如果为了保证不越界为什么不直接用 % 计算取余数？

3、为什么不直接用 key 的 hashCode，而是使用经 spreed 方法加工后的 hash 值？

这几个问题是面试经常会问到的相关问题。我们一个个来解答。

4.1 数组大小必须为 2 的 n 次方

第一个问题的答案是数组大小必须为 2 的 n 次方，也就是 16、32、64….不能为其他值。因为如果不是 2 的 n 次

方，那么经过计算的数组下标会增大碰撞的几率，例如数组长度为 21，那么 n-1=20，对应的二进制为：

10100

那么hash值的二进制如果是 10000（十进制16）、10010（十进制18）、10001（十进制17），和10100做&计算

后，都是10000，也就是都被映射到数组16这个下标上。这三个值会以链表的形式存储在数组16下标的位置。这显

然不是我们想要的结果。

但如果数组长度n为2的n次方，2进制的数值为10，100，1000，10000……n-1后对应二进制为

1，11，111，1111……这样和hash值低位&后，会保留原来hash值的低位数值，那么只要hash值的低位不一样，就

不会发生碰撞。

其实如果数组长度为 2 的 n 次方，那么 (n - 1) & hash 等价于 hash%n。那么为什么不直接用hash%n呢？这是因为

按位的操作效率会更高，经过我本地测试，& 计算速度大概是 % 操作的 50 倍左右。

所以 JDK 为了性能，而使用这种巧妙的算法，在确保元素均匀分布的同时，还保证了效率。

4.2 为什么不直接用 key 的 hashCode？

本来我们要分析 spreed 方法的代码，但是现在看起来这个方法好像并没有什么用处，直接用 key 的 hashCode来

定位哈希表的位置就可以了啊，为什么还要经过 spreed 方法的加工呢？其实说到底还是为了减少碰撞的概率。我

们先看看 spreed 方法中的代码做了什么事情：


23 按需上锁—ReadWriteLock详
解 

25 不让我进门，我就在门口一直
等！—BlockingQueue和

ArrayBlockingQueue

1、h ^ (h >>> 16)

h >>> 16 的意思是把 h 的二进制数值向右移动 16 位。我们知道整形为 32 位，那么右移 16 位后，就是把高 16 位

移到了低 16 位。而高 16 位清0了。

^为异或操作，二进制按位比较，如果相同则为 0，不同则为 1。这行代码的意思就是把高低16位做异或。如果两个

hashCode值的低16位相同，但是高位不同，经过如此计算，低16位会变得不一样了。为什么要把低位变得不一样

呢？这是由于哈希表数组长度n会是偏小的数值，那么进行 (n - 1) & hash 运算时，一直使用的是hash较低位的值。

那么即使hash值不同，但如果低位相当，也会发生碰撞。而进行h ̂ (h >>> 16)加工后的hash值，让hashCode高位

的值也参与了哈希运算，因此减少了碰撞的概率。

2、(h ^ (h >>> 16)) & HASH_BITS

我们再看完整的代码，为何高位移到低位和原来低位做异或操作后，还需要和HASH_BITS这个常量做 & 计算

呢？HASH_BITS 这个常量的值为 0x7fffffff，转化为二进制为 0111 1111 1111 1111 1111 1111 1111 1111。这个

操作后会把最高位转为 0，其实就是消除了符号位，得到的都是正数。这是因为负的 hashCode 在

ConcurrentHashMap 中有特殊的含义，因此我们需要得到一个正的 hashCode。

总结

通过以上分析我们已经清楚 ConcurrentHashMap 中是如何通过 Hash 值来映射数组位置的，这里面的算法设计确

实十分的巧妙。可能平时我们编码用不到，但也要熟记于心，相信在面试中一定用得到。下面一节我们再来看看

table 初始化以及扩容的相关内容，put 方法的主要内容就是这些，下节最后再看一下 get 方法。

}

	1、ConcurrentHashMap 原理概述
	2、ConcurrentHashMap 的构成
	2.1 重要属性
	2.2 重要组成元素
	Node
	ForwardingNode
	TreeBin
	TreeNode

	3、put 方法源码分析
	4、spread 方法源码分析
	4.1 数组大小必须为 2 的 n 次方
	4.2 为什么不直接用 key 的 hashCode？

	总结

