
更新时间：2019-11-27 11:05:50

27 倒数计时开始，三、二、一—CountDownLatch详解

本节开始我们学习一些新的东西，不再局限于线程、锁、并发容器这些内容。JCU 包中提供了一些工具，用于线程

间的协调。这些工具并不是每个并发编程的场景都需要使用。大部分场景通过 wait/nofity 或者 join 等操作就可以解

决。但是在一些特定的场景下，我们则需要借助这些工具来解决问题。本节我们先来学习 CountDownLatch。

1、理解 CountDownLatch

时间像海绵里的水，只要你愿意挤，总还是有的。

——鲁迅

file:///read/49/article/1224
file:///read/49/article/962

从字面理解 CountDownLatch，意思是倒数门闩。它的作用是多个线程做汇聚。主线程开启了 A、B、C 三个线程

做不同的事情，但是主线程需要等待 A、B、C 三个线程全部完成后才能继续后面的步骤。此时就需要

CountDownLatch 出马了。CountDownLatch 会阻塞主线程，直到计数走到 0，门闩才会打开，主线程继续执行。

而计数递减是每个线程自己操作 CountDownLatch 对象实现的。如下图：

这种场景在我们的生活中十分常见。比如篮球比赛中，作为控球后卫，如果没有快攻机会，那就需要等到中锋、大

前锋、小前锋、得分后卫都跑到位了，我才能决定怎么组织进攻。又比如我们报团去旅游，必须所有人都到机场

了，才能一起出发。

对于我们的程序来说这种场景也挺多的，比如你的订单信息可能需要从多个微服务取得数据，汇总后加工才返回给

前台。此时从多个微服务取得数据可以是多个子线程来完成。

对于以上场景，都是 CountDownLatch 的用武之地。

2、如何使用 CountDownLatch

我们来模拟打篮球的例子，主线程假如是控球后卫，我们看一下如果不用 CountDownLatch 会有什么问题：

输出为：

可以看到小前锋还没有到位，就开始进攻了。这显然和需求不符。出现这种结果也很好理解，因为代码中控球后卫

并没有等每个球员的线程到位，就开始进攻了。

正确的姿势应该如下：

public static void main(String[] args) throws InterruptedException {

 System.out.println("控球后卫到位！等待所有位置球员到位！");

 new Thread(()->{
 System.out.println("得分后卫到位！");
 }).start();

 new Thread(()->{
 System.out.println("中锋到位！");
 }).start();

 new Thread(()->{
 System.out.println("大前锋到位！");
 }).start();

 new Thread(()->{
 System.out.println("小前锋到位！");
 }).start();

 System.out.println("全部到位，开始进攻！");
}

控球后卫到位！等待所有位置球员到位！

得分后卫到位！

中锋到位！

大前锋到位！

全部到位，开始进攻！

小前锋到位！

首先声明声明了一个 countDownLatch 对象，由于有5名球员，所以传入 count=5。每个球员的线程在球员到位后，

都会执行 countDownLatch.countDown()，这个方法可以理解为我们把初始值的计数数量5做递减。当减到零时才会

执行 countDownLatch.await(); 后面的代码。countDownLatch.await() 就是我们的门闩，这行代码做的是锁门操

作，而每次 countDown()，调用5次后，门闩打开，后面的代码才被执行。

这段代码输出如下：

可以看出完全符合我们的预期，如果你还对此表示怀疑，那么你可以在某个线程中让其 sleep 上几秒，再看看是否

还是全部到位才开始进攻。

3、CountDownLatch 的原理解析

CountDownLatch 内部其实还是借助 AQS 实现的。它内部实现了 AbstractQueuedSynchronizer。使用 AQS 的

state 变量来存储计数器的值，初始化 CountDownLatch，实际在初始化 state 值。

3.1 构造函数

我们看其构造函数：

public class Client {
 private static final CountDownLatch countDownLatch = new CountDownLatch(5);
 public static void main(String[] args) throws InterruptedException {

 System.out.println("控球后卫到位！等待所有位置球员到位！");
 countDownLatch.countDown();

 new Thread(()->{
 System.out.println("得分后卫到位！");
 countDownLatch.countDown();
 }).start();

 new Thread(()->{
 System.out.println("中锋到位！");
 countDownLatch.countDown();
 }).start();

 new Thread(()->{
 System.out.println("大前锋到位！");
 countDownLatch.countDown();
 }).start();

 new Thread(()->{
 System.out.println("小前锋到位！");
 countDownLatch.countDown();
 }).start();

 countDownLatch.await();

 System.out.print("全部到位，开始进攻！");
 }
}

控球后卫到位！等待所有位置球员到位！

得分后卫到位！

中锋到位！

大前锋到位！

小前锋到位！

全部到位，开始进攻！

三个方法串起来看，发现最后就是把传入的 count 设置给了 state。

3.2 await 方法

await 方法会阻塞当前线程，代码如下：

调用了 AQS 的方法：

尝试获取共享锁 tryAcquireShared，如果不能获取进入等待队列。

tryAcquireShared 方法由 CountDownLatch 的内部类 Sync 实现，如下：

可以看到如果 state 为0就直接返回了，但如果不为零，才进入等待队列。调用 tryAcquireShared 仅仅检查 state

值，而不会对其减 1，可以看到传入的参数 acquires根本没有用。

我们再看看 countDown 方法。

3.3 countDown 方法

这个方法会对 state 递减。当计数器减为 0 时，所有阻塞的线程都被唤醒。代码如下：

可见其也是通过对自己的 AQS 子类调用 releaseShared 方法：

public CountDownLatch(int count) {
 if (count < 0) throw new IllegalArgumentException("count < 0");
 this.sync = new Sync(count);
}

Sync(int count) {
 setState(count);
}

protected final void setState(int newState) {
 state = newState;
}

public void await() throws InterruptedException {
 sync.acquireSharedInterruptibly(1);
}

public final void acquireSharedInterruptibly(int arg)
 throws InterruptedException {
 if (Thread.interrupted())
 throw new InterruptedException();
 if (tryAcquireShared(arg) < 0)
 doAcquireSharedInterruptibly(arg);
}

protected int tryAcquireShared(int acquires) {
 return (getState() == 0) ? 1 : -1;
}

public void countDown() {
 sync.releaseShared(1);
}


26不让我进门，我就在门口一直
等！—BlockingQueue和
ArrayBlockingQueue


28 人齐了，一起行动—

CyclicBarrier详解

而在这个方法里，tryReleaseShared 是由子类实现的，也就是 countDown 中的 Sync 类，实现代码如下：

以上代码在自旋中，通过 CAS 的方式对 state 值-1，如果 c-1 后等于 0，说明计数到 0。那么 releaseShared 中会

调用 doReleaseShared()，让 AQS 释放资源出来。

以上对做 CountDownLatch 源代码做了简单的分析，可以看出主要是使用 AQS 来实现。通过阻塞队列阻塞线程。

然后通过 state 值的初始化和递减，实现 state 为 0 时，激活阻塞的线程。

4、总结

CountDownLatch 有其一定的应用场景，对于多线程协调和串起流程有很大的帮助。我们在多线程开发中，可以留

意是否有类似的场景，能够通过 CountDownLatch 来解决。CountDownLatch 自身也有一定的局限性，它只能被使

用一次，而不能被恢复再次使用。下一节我们讲学习 CyclicBarrier，它可以重置以重复使用。

}

public final boolean releaseShared(int arg) {
 if (tryReleaseShared(arg)) {
 doReleaseShared();
 return true;
 }
 return false;
}

protected boolean tryReleaseShared(int releases) {
 // Decrement count; signal when transition to zero
 for (;;) {
 int c = getState();
 if (c == 0)
 return false;
 int nextc = c-1;
 if (compareAndSetState(c, nextc))
 return nextc == 0;
 }
}

	1、理解 CountDownLatch
	2、如何使用 CountDownLatch
	3、CountDownLatch 的原理解析
	3.1 构造函数
	3.2 await 方法
	3.3 countDown 方法

	4、总结

