
更新时间：2019-12-03 09:55:08

28 人齐了，一起行动—CyclicBarrier详解

上一节我们讲解了 CountDownLatch，它的作用是让多个线程完成后，再促使主线程继续向下执行。不过它有一定

的局限性，无法被重复使用。本节我们学习的 CyclicBarrier 不会有这个问题。CyclicBarrier 从字面上理解为循环栅

栏。栅栏自然起到的就是屏障的作用，阻止线程通过，而循环则是指其可以反复使用。下面我们就先看看如何使用

CyclicBarrier。

1、CyclicBarrier 的使用

几年前北京的黑车盛行，西二旗地铁口，大量黑车司机在出口招揽生意：“软件园、软件园！5 块一位！还差最后一

位！” 。等你上车，发现其实不是还差一位，而是只有你一位。而司机此时绝对不会发车，而是会等车上坐够 4 个

人后才出发，然后下一辆黑车再次坐满 4 人后发车。下面我们就使用 CyclicBarrier 来模拟这个场景。

青年是学习智慧的时期，中年是付诸实践的时期。

—— 卢梭

file:///read/49/article/961
file:///read/49/article/963

代码中首先声明 cyclicBarrier 对象，构造方法有两个参数，第一个参数是计数器初始值，每有一个线程达成则会减

1 。减到 0 时，触发执行第二个参数传入的 Runnable 实现的 run 方法。我这里使用 lambda 的方式简化代码。如

果你不需要这个 Runnable 的任务，那么只需要传入第一个参数即可。

接下来的代码中，模拟 10 位乘客上车，每次上车后调用 cyclicBarrier.await() 。这里就是屏障点，此时当前线程会

阻塞在此处，并且计数器被减 1 。为了输出的效果便于观看，每次新线程启动前先 sleep 一会。

每当四个乘客完成上车操作，cyclicBarrier 就会触发 “人满了发车” 的操作。而最后两位乘客上车后，由于没有新的

乘客上车，计数器不会被减到 0，导致无法越过屏障，所以永远不会发车。

cyclicBarrier运行的示意图如下：

public class Client {
 public static void main(String[] args) {
 CyclicBarrier cyclicBarrier = new CyclicBarrier(4, () ->
 System.out.println("人满了发车")
);

 IntStream.range(1, 11).forEach(number -> {
 try {
 Thread.currentThread().sleep(100);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 new Thread(() -> {
 try {
 System.out.println("第 " + number + " 乘客上车了！");
 cyclicBarrier.await();
 System.out.println("第 " + number + " 乘客出发了！");
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (BrokenBarrierException e) {
 e.printStackTrace();
 }
 }).start();
 });
 }
}

代码运行输出如下：

可以看到每上车 4 人，才会触发发车，同时每个人的线程才会继续 cyclicBarrier.await() 后面的代码，输出 “第 n 乘

客出发了！”

这个例子也验证了 CyclicBarrier 可以重复使用，每次满 4 人上车，都会触发发车。然后重新开始计数。

通过这个例子我们了解了 CyclicBarrier 的使用。在这里我们总结下 CyclicBarrier 涉及的几个概念：

1、计数器。初始值为构造 CyclicBarrier 传入的第一个参数，每当一个线程到达屏障点，计数器减1；

2、屏障点，线程中调用 cyclicBarrier.await() 后，该线程到达屏障点，等待 CyclicBarrier 打开，也就是计数器到 0

；

3、冲出屏障后的任务。首先这个任务可选。不需要的话，在构造 CyclicBarrier 时只需要传入计数器初始值即可。

这个任务在计数器到 0时被触发。

2、CyclicBarrier 原理解析

2.1、 CyclicBarrier 中的属性

可以看到 CyclicBarrier 内部通过 ReentrantLock 来实现的，而 ReentrantLock 的底层实现还是 AQS。

第 1 乘客上车了！
第 2 乘客上车了！
第 3 乘客上车了！
第 4 乘客上车了！
人满了发车

第 4 乘客出发了！
第 1 乘客出发了！
第 2 乘客出发了！
第 3 乘客出发了！
第 5 乘客上车了！
第 6 乘客上车了！
第 7 乘客上车了！
第 8 乘客上车了！
人满了发车

第 8 乘客出发了！
第 5 乘客出发了！
第 7 乘客出发了！
第 6 乘客出发了！
第 9 乘客上车了！
第 10 乘客上车了！

/** CyclicBarrier使用的拍他锁*/
private final ReentrantLock lock = new ReentrantLock();
/** barrier被冲破前，线程等待的condition*/
private final Condition trip = lock.newCondition();
/** barrier被冲破时，需要满足的参与线程数。*/
private final int parties;
/* barrier被冲破后执行的方法。*/
private final Runnable barrierCommand;
/** 当其轮次 */
private Generation generation = new Generation();

/**
 *目前等待剩余的参与者数量。从 parties倒数到0。每个轮次该值会被重置回parties
 */
private int count;

parties 在构造函数中被赋值，它的值永远不会变，因为 CyclicBarrier 会被重置复用。而每个轮次真正用来计数的

变量是 count。每个轮次结束，count 会被重置为 parties 的值。

2.2、 await() 方法解析

await 方法的调用，代表调用线程到达了屏障点，这个方法其实调用了 dowait 方法，我们直接分析 dowait 方法，

它实现了 CyclicBarrier 的核心功能。

/**
 * Main barrier code, covering the various policies.
 */
private int dowait(boolean timed, long nanos)
 throws InterruptedException, BrokenBarrierException,
 TimeoutException {
 final ReentrantLock lock = this.lock;
 //对共享资源count，generation操作前，需要先上锁保证线程安全
 lock.lock();
 try {
 //拿到当前轮次对象的引用
 final Generation g = generation;
 //如果已经broken，那么抛出异常
 if (g.broken)
 throw new BrokenBarrierException();
 //如果被打断，通过breakBarrier方法设置当前轮次为broken状态，通知当前轮次所有等待的线程线程
 //并且抛出InterruptedException
 if (Thread.interrupted()) {
 breakBarrier();
 throw new InterruptedException();
 }
 //count减1
 int index = --count;
 //如果index为0，那么冲破屏障点
 if (index == 0) { // tripped
 boolean ranAction = false;
 //冲破屏障点后，如果CyclicBarrier构造时传入Runnable，则被调用。
 try {
 final Runnable command = barrierCommand;
 if (command != null)
 command.run();
 ranAction = true;
 //这个方法中会进行重置，并且通知所有在屏障点阻塞的线程继续执行。
 nextGeneration();
 return 0;
 } finally {
 //正常情况由于运行了command后ranAction被置为true，并不会执行如下逻辑
 //在command执行期间出了异常才会进入下面的逻辑，认为当前轮次被破坏了
 if (!ranAction)
 breakBarrier();
 }
 }

 //开始自旋，直到屏障被冲破，或者interrupted或者超时
 for (;;) {
 try {
 if (!timed)
 //阻塞，此时会释放锁，以让其他线程进入await方法中。等待屏障被冲破后，向后执行
 trip.await();
 else if (nanos > 0L)
 nanos = trip.awaitNanos(nanos);
 } catch (InterruptedException ie) {
 //如果当前线程阻塞被interrupt了，并且本轮次还没有被break，那么修改本轮次状态为broken
 if (g == generation && ! g.broken) {
 breakBarrier();
 throw ie;
 } else {
 Thread.currentThread().interrupt();

以上代码分为两大段逻辑，分别是自旋前，和自旋。

A、自旋前的逻辑，核心逻辑如下：

1. 计数器 -1；

2. 判断是否计数器到 0；

3. 如果到了，则冲破屏障点，执行传入的 Runnable；

4. 调用 nextGeneration() 来更新 Generation，重置计数器，并且通知本轮次等待的线程。

B、如果计数器没有到 0，则进入自旋的逻辑：

1. 开始等待，此时会释放锁，以让其它线程进入 lock 的代码块执行以上逻辑；

2. 当被唤醒时，可能因为当前 generation 被 break 了，或者计数器到 0，屏障被冲破；

3. 对比边刚进入 dowait 方法时获取的 generation 对象和最新 generation 是否一致。不一致说明已经换代了，也就

是屏障被冲破，可以 return 了；

4. 如果等待超时或者 generation 被 break，分别抛出异常。

不同线程在 A 部分的逻辑会影响已经进入 B 部分逻辑的线程中止自旋。这些自旋的线程或者冲破屏障点，继续向

下执行，也可能抛出异常。

我们再看下用于更新轮次的方法 nextGeneration()：

三行代码做了三件事：

1、通知所有被阻塞在本轮次屏障点的线程。屏障点被冲破，可以继续向下执行了；

2、重置计数器为初始值；

 }
 }
 //如果本轮次被破坏，那么抛出异常
 if (g.broken)
 throw new BrokenBarrierException();

 //如果已经成功进入下一轮次，那么返回index
 if (g != generation)
 return index;
 //如果已经超时，那么本轮次被打破
 if (timed && nanos <= 0L) {
 breakBarrier();
 throw new TimeoutException();
 }
 }
 } finally {
 //释放锁
 lock.unlock();
 }
}

private void nextGeneration() {
 // signal completion of last generation
 trip.signalAll();
 // set up next generation
 count = parties;
 generation = new Generation();
}


27 倒数计时开始，三、二、一—
CountDownLatch详解 

29 一手交钱，一手交货—
Exchanger详解

3、更新轮次对象。这样自旋中的线程才会跳出自旋。

3、总结

CyclicBarrier 和 CountDownLatch 相比，更为灵活，可以被重复使用。前者可以用来分段任务，假如有个任务需要

分三个阶段来完成，每个阶段可以多线程并发执行，但是进入下一个阶段的时候，必须所有线程都完成了第一阶段

的执行。那么通过 CyclicBarrier，在每个线程的每个阶段开始前都设置屏障点，可以很轻松地实现。

CyclicBarrier 的实现是通过 ReentrantLock 控制计数器的原子更新，通过条件变量来实现线程同步。

}

	1、CyclicBarrier 的使用
	2、CyclicBarrier 原理解析
	2.1、 CyclicBarrier 中的属性
	2.2、 await() 方法解析

	3、总结

