
更新时间：2019-12-10 09:50:17

30 限量供应，不好意思您来晚了—Semaphore详解

前几节我们学习了几种多线程线程同步工具，有一次性使用的倒数计数的 CountDownLatch，有循环使用的

CyclicBarrier，还有可以做数据交换的 Exchanger。今天我们再讲解一种同步工具 Semaphore。

1、Semaphore 简介

Semaphore 是信号量的意思，通过信号量可以对同一资源访问做数量的限制。我们回忆一下无论是 Synchronized

还是 ReentrantLock 都是限制每次只有一个线程并发访问资源。而信号量可以控制更多数量的线程访问资源，但是

不能超过信号量的准入数。

耐心和恒心总会得到报酬的。

——爱因斯坦

file:///read/49/article/963
file:///read/49/article/965

这就像停车场，如果停车位资源不紧张，车可以随便进。但是当停车场停满了车，那么不好意思，您来晚了。你只

能在入口等待。出去几辆，才能放几辆进来。这个例子中，停车场就是共享资源，停车位的数量就是信号量准入

数。而每辆车就是一个线程。停车场控制系统就是今天要学习的 Semaphore。

下面我们看看如何用代码实现以上的例子。

2、如何使用 Semaphore

下面的代码模拟 10 个车位的停车场，今天不知道附近有什么活动，突然过来了 500 辆车要停入停车场。这样必然

会造成排队，前面的车出去一辆后面的车才能进来一辆。代码如下：

输出比较多，我们先看开始的输出：

public class Client {
 public static void main(String[] args) {
 //用于生成随机停车时长
 Random random = new Random();
 //用Semaphore模拟有10个停车位的停车场管理系统
 final Semaphore parkingSystem = new Semaphore(10);

 //模拟500辆汽车来停车
 IntStream.range(0,500).forEach(i->{
 new Thread(()->{
 //取得到达停车场的时间
 Long startWaitTime = System.currentTimeMillis();
 System.out.println("第"+(i+1)+"辆汽车来到车库");

 //等待停车场系统控制抬杆。如果还有空位，立即抬杆，否则一直等到有空位才抬杆
 try {
 //acquire方法用于获取资源，这里模拟发出抬杆放行的请求
 parkingSystem.acquire();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 //已经抬赶，计算等待时长
 Long waitingTime = (System.currentTimeMillis() - startWaitTime)/1000;
 System.out.println("第"+(i+1)+"辆汽车等待"+waitingTime+"毫秒后进入车库");
 //通过sleep模拟停车时长
 int parkingTime = random.nextInt(10)+2;
 try {
 TimeUnit.SECONDS.sleep(parkingTime);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 //release方法用于释放资源，模拟驶出停车场
 parkingSystem.release();
 System.out.println("第"+(i+1)+"辆汽车停车"+parkingTime+"毫秒离开车库");
 }).start();
 });
 }
}

第1辆汽车来到车库
第3辆汽车来到车库
第2辆汽车来到车库
第3辆汽车等待0毫秒后进入车库
第5辆汽车来到车库
第4辆汽车来到车库
第1辆汽车等待0毫秒后进入车库
第6辆汽车来到车库
第4辆汽车等待0毫秒后进入车库
第5辆汽车等待0毫秒后进入车库
第2辆汽车等待0毫秒后进入车库
第7辆汽车来到车库
第6辆汽车等待0毫秒后进入车库
第9辆汽车来到车库
第9辆汽车等待0毫秒后进入车库
第7辆汽车等待0毫秒后进入车库
第8辆汽车来到车库
第8辆汽车等待0毫秒后进入车库
第10辆汽车来到车库
第10辆汽车等待0毫秒后进入车库
第11辆汽车来到车库
第12辆汽车来到车库
第13辆汽车来到车库
第14辆汽车来到车库
......

可以看到前 10 辆车进入车库都是不需要等待的，从第 11 辆车开始已经无法进入车库了。我们继续看后买面的输

出：

由于汽车线程启动没有间隔，也就意味着 500 辆车瞬间挤压到停车场门口，等待入场。继续看下面的输出：

可以看到第一批进入车库的汽车，逐步离开车库。后面排队的车陆续进来。另外也可以观察到，离开汽车的停车时

长和进入汽车的等待时长是一致，这也证明了只有走了一辆，才能进入一辆。

不过由于多线程输出日志，所以顺序上并不一定是一辆离开，一辆进入。但实际运行情况确实是走了一辆才放入一

辆。

Semaphore 可以选择竞争策略是否公平。构造 Semaphore 时可以传入第二个参数，如下面代码所示：

如果构造时传入第二个参数为 true，那么就是公平的，不传默认也是公平的。这一点通过以上例子的输出也有所体

现。

3、Semaphore 源码分析

我们先看 Semaphore 的构造方法：

根据传入 fair 的不同，选择 sync 对象是公平还是不公平。FairSync 和 NonfairSync 都是 Semaphore 内部静态类，

继承自 AQS。Semaphore 也是借助 AQS 来实现的。

我们再看 acquire 方法代码：

......
第495辆汽车来到车库
第496辆汽车来到车库
第497辆汽车来到车库
第498辆汽车来到车库
第499辆汽车来到车库
第500辆汽车来到车库
......

第3辆汽车停车4毫秒离开车库
第11辆汽车等待4毫秒后进入车库
第6辆汽车停车5毫秒离开车库
第12辆汽车等待5毫秒后进入车库
第5辆汽车停车7毫秒离开车库
第2辆汽车停车7毫秒离开车库
第13辆汽车等待7毫秒后进入车库
第14辆汽车等待7毫秒后进入车库
第10辆汽车停车8毫秒离开车库
第15辆汽车等待8毫秒后进入车库
第1辆汽车停车9毫秒离开车库
第4辆汽车停车9毫秒离开车库

final Semaphore parkingSystem = new Semaphore(10,true);

public Semaphore(int permits, boolean fair) {
 sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

调用了 AQS 中的 acquireSharedInterruptibly 方法。继续看此方法代码：

核心是先调用 tryAcquireShared，尝试获取，如果获取失败则调用 doAcquireSharedInterruptibly，自旋进入等待队

列，如果排到自己，那么再次尝试调用 tryAcquireShared。这个方法之前详细分析过，这里就不再展开来讲。

接下来我们看看尝试获取资源的方法 tryAcquireShared，它的实现在 Semaphore 内部静态类 Sync 中，如下：

下面我们再来看一下 release 的源代码：

可以看到每次释放数量为 1。另外还有可以传入 release 资源数量的重载方法。

releaseShared 代码如下：

调用 tryReleaseShared 方法进行资源释放，然后调用 doReleaseShared 来发送信号通知下一个节点来获取资源。

tryReleaseShared 的实现也在 Semaphore 内部静态类 Sync 中，如下：

public void acquire() throws InterruptedException {
 sync.acquireSharedInterruptibly(1);
}

public final void acquireSharedInterruptibly(int arg)
 throws InterruptedException {
 if (Thread.interrupted())
 throw new InterruptedException();
 if (tryAcquireShared(arg) < 0)
 doAcquireSharedInterruptibly(arg);
}

protected int tryAcquireShared(int acquires) {
 for (;;) {
 //看是否有更早等待的线程，如果有，获取失败
 if (hasQueuedPredecessors())
 return -1;
 //查询剩余的信号量准入数量
 int available = getState();
 //查询剩余的信号量准入数量，看是否满足想要获取的数量
 int remaining = available - acquires;
 //剩余的数量>0则会通过CAS的方式刷新剩余信号量。并且返回剩余信号量。
 if (remaining < 0 ||
 compareAndSetState(available, remaining))
 return remaining;
 }
}

public void release() {
 sync.releaseShared(1);
}

public final boolean releaseShared(int arg) {
 if (tryReleaseShared(arg)) {
 doReleaseShared();
 return true;
 }
 return false;
}


29 一手交钱，一手交货—
Exchanger详解 31 凭票取餐—Future模式详解

获取当前剩余信号量计数，然后把释放的资源数量加回来。最后通过 CAS 方式刷新信号量的计数。

4、总结

信号量用来控制共享资源的访问数量。所以很适合控制有 “池” 概念的资源访问。因为池的意思就是池内有有限数量

的资源可以使用。如果在池这个层面抽象为一个资源来对待，那么使用 Semaphore 来做控制就非常合适。

}

protected final boolean tryReleaseShared(int releases) {
 for (;;) {
 int current = getState();
 int next = current + releases;
 if (next < current) // overflow
 throw new Error("Maximum permit count exceeded");
 if (compareAndSetState(current, next))
 return true;
 }
}

	1、Semaphore 简介
	2、如何使用 Semaphore
	3、Semaphore 源码分析
	4、总结

