
更新时间：2019-12-19 09:43:24

33 分阶段执行你的任务-学习使用Phaser运行多阶段任务

本节我们学习的 Phaser，自 Java 7 出现，在功能上和 CyclicBarrier 及 CountDownLatch 很相似，不过更为灵活。

我们回想 CyclicBarrier 的使用，在初始化时需要指定参与者数量，并且无法更改。而 Phaser 可以灵活的添加参与

者，以及动态注销参与者，从而更加灵活地协同线程工作。

1、Phaser API 介绍

Phaser 从名称可以看出，它对线程协同的重点是任务阶段。phaser 中维护了所处阶段的数值。其实 CyclicBarrier

也可以实现类似的功能，但无法应对更为复杂的场景。Phaser 会更为的灵活，这体现着它对参与者的动态增减。

并且参与者可以选择到达屏障点后是否阻塞。我们先看 Phaser 中涉及到的两个重要概念：

1. phase。Phaser 对阶段进行管理，而 phase 就是阶段，可以是阶段 1、阶段 2、阶段 3…… 当所有的参与者到达

某个阶段屏障点时，phaser 会进入下一个阶段；

2. party。参与者，Phase r 中会记录参与者的数量，可以通过 register 方法来添加，或者通过 arriveAndDeregister

来注销。

接下来我们看一下 Phaser 的主要 API：

1. register ()：参与者数量加一；

2. arrive ()：参与者到达屏障点，到达数量加一。但是不会阻塞调用此方法的线程；

3. arriveAndAwaitAdvance ()：参与者到达屏障点，到达数量加一。阻塞线程直到所有的参与者到达该 phase 轮

次；

青年是学习智慧的时期，中年是付诸实践的时期。

—— 卢梭

file:///read/49/article/966
file:///read/49/article/1318

4. arriveAndDeregister ()：参与者到达屏障点，到达数量加一。然后从 Phase 注销掉一个参与者，参与者减一；

5. awaitAdvance (int phase)：阻塞所有的参与者到达该 phaser 的指定轮次。如果当前轮次和 phase 值不同或者

phase 已被终止时，会立即返回；

6. awaitAdvanceInterruptibly (int phase)：功能同上，但是可以被打断；

7. awaitAdvanceInterruptibly (int phase, long timeout, TimeUnit unit)：功能同上，但是只阻塞指定的时长；

8. bulkRegister (int parties)：批量注册参与者；

9. forceTermination ()：终止当前 phaser，改变其状态为 termination；

10. onAdvance ()：阶段达成时被调用，子类可以对其重写。。

2、Phaser 使用示例

网 上 有 很 多 Phaser 的使用范例，但其实绝大多数并没有体现出 Phaser 的优势来，看完之后反而觉得用

CyclicBarrier 也是能直接实现。其实 Phaser 的优势体现在对参与者数量动态管理上。下面我们写一个简单的例

子，来看看 Phaser 如何使用。

我们设想如下场景：期末考试到了，软件学院三个班共有 60 个学生一起参加考试，全部交卷后，有 3 个老师做判

卷的工作，再由 3 位辅导员公布成绩。

这个过程中分为三个阶段：

1. 学生考试，参与者 50

2. 老师判卷，参与者 3

3. 辅导员公布成绩，参与者 3

这个过程使用一个 CyclicBarrier 是无法实现的，因为 CyclicBarrier 的参与者数量无法变化。为了日志的简洁，下

面的代码只模拟 10 个学生考试：

1、首先主线程进行 register，因为主线程要使用 phaser 来控制流程，它也是参与者之一；

2、然后起 10 个学生线程考试、交卷。注意起线程前需要通过 phaser.register () 来注册参与者；

3、接下来主线程 phaser.arriveAndAwaitAdvance (); 这个方法会阻塞，直到所有的子线程执行了

phaser.arriveAndDeregister ()，此时进入下一个 phase；

4、创建三个 teacher 线程进行判卷，和 student 线程一样，需要先注册自己，输出判卷完成后，调用

phaser.arriveAndAwaitAdvance ()，通知 phaser 自己已经到达并且要注销；

5、主线程还是调用 phaser.arriveAndAwaitAdvance (); 阻塞，等待所有老师线程 arrive。然后继续执行；

6、创建 3 个 counsellor 线程。先注册自己，公布成绩后，调用 phaser.arriveAndAwaitAdvance ()，通知 phaser 自

己已经到达并且要注销。

public class Client {
 public static void main(String[] args) {
 Phaser phaser = new Phaser();
 //主线程注册
 phaser.register();
 //10个学生线程分别启动开始考试，然后交卷，交卷后通知phaser已到达并且注销
 IntStream.range(1,10).forEach(number->{
 phaser.register();
 Thread student= new Thread(()->{
 try {
 TimeUnit.SECONDS.sleep(5);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("学生"+number+"交卷");
 phaser.arriveAndDeregister();
 });
 student.start();
 });
 //学生并行考试时，主线程会先执行到此行代码，但由于本phase还没有达成，所以阻塞在此
 phaser.arriveAndAwaitAdvance();
 //所有学生达成后，开始新的phase，下面启动三个老师线程，开始判卷
 IntStream.range(1,3).forEach(number->{
 phaser.register();
 Thread teacher= new Thread(()->{
 try {
 TimeUnit.SECONDS.sleep(3);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("老师"+number+"判卷完成");
 phaser.arriveAndDeregister();
 });
 teacher.start();
 });
 //老师判卷时，主线程会先执行到此行代码，但由于本phase还没有达成，所以阻塞在此
 phaser.arriveAndAwaitAdvance();
 //所有老师都达成后，开始新的phase，下面启动三个辅导员线程，公布成绩
 IntStream.range(1,3).forEach(number->{
 phaser.register();
 Thread counsellor= new Thread(()->{
 System.out.println("辅导员"+number+"公布成绩完成");
 phaser.arriveAndDeregister();
 });
 counsellor.start();
 });
 }

主流程通过 phaser.arriveAndAwaitAdvance () 来阻塞，控制主流程在上一 phase 完成后才进入下个 phase。在每

个 phase 中会有多个线程同时执行。

程序输出如下：

可以看到和我们预想的一模一样。阶段间串行，阶段内并行。

下面总结一下我们使用到的 phaser 的方法：

1、new Phaser ()。创建新的 Phaser，并且参与者为 0；

2、phaser.register (); 增加参与者；

3、phaser.arriveAndDeregister (); 参与者到达，并且注销掉参与者。这个方法不会阻塞；

4、phaser.arriveAndAwaitAdvance (); 阻塞等待阶段达成。

3、Phaser 实现原理解析

下面我们分析一下 Phaser 的实现原理。我们先来理解 Phaser 中有一个很关键的属性 status。

这个 long 类型的 status 在不同 bit 位保存了 Phaser 状态相关的四种属性，具体如下：

0-15 位：还未到达屏障的参与者数量

16-31 位：参与者数量

32-62 位：phase 的轮次

63 位：标识是否被终止

可以看到与 Phaser 状态相关的数据都包含在 state 之中。不分开保存的原因是多个属性不能通过 CAS 的方式做原

子操作。把这些属性组合起来，可以通过 CAS 方式更新确保线程安全，并且变相做到了多个属性更新的原子操

作。

Phaser 中有两个链表保存等待的线程：

学生8交卷
学生1交卷
学生9交卷
学生2交卷
学生3交卷
学生6交卷
学生7交卷
学生4交卷
学生5交卷
学生10交卷
老师3判卷完成
老师1判卷完成
老师2判卷完成
辅导员1公布成绩完成
辅导员2公布成绩完成
辅导员3公布成绩完成

private volatile long state;

这是为了消除添加和释放线程等待的争抢。所以根据 phaser 轮次的奇偶，保存在不同的链表中。

这里就不再展开将 Phaser 的源代码了，简单讲一下源代码中的实现原理。首先我们知道 state 保存了 4 种状态，

所以更新状态的时候要把 status 中相应属性增减的数值换算为相应位数对应的整数，然后通过 CAS 的方式进行修

改。

比如通过调用 arrive 方法，需要减少一个未到达屏障的参与者，也就是要对 state 的 0-1 5 位 - 1。由于为低位 -

1，所以直接对 state 减一即可。如下，adjust 的值为 1：

如果调用 arriveAndDeregister 方法，减少一个未到达屏障的参与者，并且还要减少一个参与者。相当于对 0-15 位

减 1，并且对 16-31 位减 1，对应的二进制数值就是 10000000000000001，转化为 10 进制为 65537。那么需要对

status 减掉 65537。我们看一下 arriveAndDeregister 方法：

我们看到调用 doArrive 时传入的参数是 ONE_DEREGISTER，它的值如下：

ONE_ARRIVAL= 1， ONE_PARTY=1 << PARTIES_SHIFT，PARTIES_SHIFT=16。也就是 ONE_PARTY 的值是

1 向左移 16 位。那么 ONE_ARRIVAL|ONE_PARTY 得出的二进制就是 10000000000000001。正是我们按照需求

推断出的二进制数值。

此外为了取出 state 中相应 bit 位数区间的状态值，Phaser 是通过位移或者 &、| 操作来实现，例如取得 phse 轮次

值的代码如下：

PHASE_SHIFT 为 32。将 state 值右移 32 位，这意味着把代表 phase 轮次的 32-63 位 bit 数值移到了 0-32 位。

然后强转 int 类型，消除掉高 32 位。这样就得到了 phase 的轮次真正数值。

Phaser 对 state 的操作方式都是这种二进制的方式，一开始看起来会比较费劲，但是理解了它的原理，也并不复

杂。其他的关于等待线程的管理、线程阻塞和恢复，和之前我们分析的源代码大同小异。大家感兴趣的话，也可以

看一看。

4、总结

Phaser 提供了分阶段执行任务的功能，并且能够动态的改变参与者的数量，和 CyclicBarrier 以及

CountDownLatch 比较起来更为灵活。这也是 JDK 的文档中所提到的。实际开发中按照需求选择使用。

}

private final AtomicReference<QNode> evenQ;
private final AtomicReference<QNode> oddQ;

(UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust))

public int arriveAndDeregister() {
 return doArrive(ONE_DEREGISTER);
}

private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;

int phase = (int)(s >>> PHASE_SHIFT);


32 请按到场顺序发言—
Completion Service详解 

34 谁都不能偷懒-通过
CompletableFuture 组装你的异

步计算单元

	1、Phaser API 介绍
	2、Phaser 使用示例
	3、Phaser 实现原理解析
	4、总结

