
更新时间：2019-12-24 10:04:04

34 谁都不能偷懒-通过 CompletableFuture 组装你的异步计算单元

本节是我在写专栏过程中临时决定加入的，之前考虑 CompletableFuture 的使用需要结合 lambda 表达式以及

stream 的思想，对于初学者有些困难。但是 CompletableFuture 自 java 8 引入后，实际开发中使用还是比较多

的，还是决定写一节 CompletableFuture 的使用。

一些比较复杂的异步计算场景，尤其是需要串联多个异步计算单元的场景，可以考虑使用 CompletableFuture 来实

现。如果你熟悉 Stream 以及 lambda，学习使用 CompletableFuture 会比较简单。如果没有接触过 Stream 可能理

解上会有一点困难。不过没有关系，我们集中注意力在 CompletableFuture 本身上，跟着本节讲解的思路，自己多

做练习，相信你肯定能够融会贯通，灵活运用。

1、CompletableFuture 介绍

CompletableFuture 作为 Java 8 的新特性被引入。任何工具的出现肯定带着自己的使命，那么它是用来解决什么问

题的呢？

在现实世界中，我们需要解决的复杂问题都是要分为若干步骤。就像我们的代码一样，一个复杂的逻辑方法中，会

调用多个方法来一步一步实现。

设想如下场景，植树节要进行植树，分为下面几个步骤：

1、挖坑 10 分钟

2、拿树苗 5 分钟

不想当将军的士兵，不是好士兵。

——拿破仑

file:///read/49/article/967
file:///read/49/article/968

3、种树苗 20 分钟

4、浇水 5 分钟

其中 1 和 2 可以并行，1 和 2 都完成了才能进行步骤 3，然后才能进行步骤 4。

我们有如下几种实现方式：

1、只有一个人种树

如果现在只有一个人植树，要种 100 棵树，那么只能按照如下顺序执行：

图中仅列举种三棵树示意。可以看到串行执行，只能种完一棵树再种一棵，那么种完 100 棵树需要 40 * 100 =

4000 分钟。

这种方式对应到程序，就是单线程同步执行。

2、三个人同时种树，每个人负责种一棵树

如何缩短种树时长呢？你肯定想这还不好办，学习了这么久的并发，这肯定难不倒我。不是要种 100 棵树吗？那我

找 100 个人一块种，每个人种一棵。那么只需要 40 分钟就可以种完 100 棵树了。

没错，如果你的程序有个方法叫做 plantTree，里面包含了如上四部，那么你起 100 个线程就可以了。但是，请注

意，100 个线程的创建和销毁需要消耗大量的系统资源。并且创建和销毁线程都有时间消耗。此外CPU的核数并不

能真的支持100个线程并发。如果我们要种1万棵树呢？总不能起一万个线程吧？

所以这只是理想情况，我们一般是通过线程池来执行，并不会真的启动100个线程。

3、多个人同时种树。种每一棵树的时候，不依赖的步骤可以分不同的人并行干

这种方式可以进一步缩短种树的时长，因为第一步挖坑和第二步拿树苗可以两个人并行去做，所以每棵树只需要35

分钟。如下图：

如果程序还是 100 个主线程并发运行 plantTree 方法，那么只需要 35 分钟种完 100 颗树。

这里需要注意每个线程中，由于还要并发两个线程去做 1，2 两个步骤。实际运行中会又 100*3 = 300 个线程参与

植树。但是负责 1，2 步骤的线程只会短暂参与，然后就闲置了。

这种方法和第二种方式也存在大量创建线程的问题。所以也只是理想情况。

4、假如只有 4 个人植树，每个人只负责自己的步骤，那么执行如下图

可以看到一开始小王挖完第一个坑后，小李已经取回两个树苗，但此时小张才能开始种第一个树苗。此后小张就可

以一个接一个的去种树苗了，并且在他种下一棵树苗的时候，小赵可以并行浇水。按照这个流程走下来，种完 100

颗树苗需要 10+20x100+5=2015 分钟。比单线程的4000分钟好了很多，但是远远比不上 100 个线程并发种树的速

度。不过不要忘记 100 个线程并发只是理想情况，而本方法只用了 4 个线程。

我们再对分工做下调整。每个人不只干自己的工作，一旦自己的工作做完了就看有没有其他工作可以做。比如小王

挖坑完后，发现可以种树苗，那么他就去种树苗。小李拿树苗完成后也可以去挖坑或者种树苗。这样整体的效率就

会更高了。如果基于这种思想，那么我们实际上把任务分成了 4 类，每类 100 件，一共 400 件任务。400 件任务

全部完成，意味着整个任务就完成了。那么任务的参与者只需要知道任务的依赖，然后不断领取可以执行的任务去

执行。这样的效率将会是最高的。

前文说到我们不可能通过100个线程并发来执行任务，所以一般情况下我们都会使用线程池，这和上面的设计思想

不谋而合。使用线程池后，由于第四种方式把步骤拆的更细，提高了并发的可能性。因此速度会比第二种方式更

快。那么和第三种比起来，哪种更快呢？如果线程数量可以无穷大，这两个方法能达到的最短时间是一样的，都是

35 分钟。不过在线程有限的情况下，第四种方式对线程的使用率会更高，因为每个步骤都可以并行执行（参与种

树的人完成自己的工作后，都可以去帮助其他人），线程的调度更为灵活，所以线程池中的线程很难闲下来，一直

保持在运转之中。是的，谁都不能偷懒。而第三种由于只能并发在 plantTree 方法及挖坑和拿树苗，所以不如第四

种方式灵活。

上文讲了这么多，主要是要说明 CompletableFuture 出现的原因。他用来把复杂任务拆解为一个个衔接的异步执行

步骤，从而提升整体的效率。我们回一下小节题目：谁都不能偷懒。没错，这就是 CompletableFuture 要达到的效

果，通过对计算单元的抽象，让线程能够高效的并发参与每一个步骤。同步的代码通过 CompletableFuture 可以完

全改造为异步代码。下面我们就来看看如何使用 CompletableFuture。

2、CompletableFuture 介绍

CompletableFuture 实现了 Future 接口并且实现了 CompletionStage 接口。Future 接口我们已经很熟悉了，而

CompletionStage 接口定了异步计算步骤之间的规范，这样确保一步一步能够衔接上。CompletionStage 定义了38

个 public 的方法用于异步计算步骤间的衔接。接下来我们会挑选一些常用的，相对使用频率较高的方法，来看看如

何使用。

2.1 已知计算结果

如果你已经知道 CompletableFuture 的计算结果，可以使用静态方法 completedFuture。传入计算结果，声明

CompletableFuture 对象。在调用 get 方法时会立即返回传入的计算结果，不会被阻塞，如下代码：

输出为：

是不是觉得这种用法没有什么意义？既然知道计算结果了，直接使用就好了，为什么还要通过 CompletableFuture

进行包装？这是因为异步计算单元需要通过 CompletableFuture 进行衔接，所以有的时候我们即使已经知道计算结

果，也需要包装为 CompletableFuture，才能融入到异步计算的流程之中。

public static void noComputation() throws ExecutionException, InterruptedException {
 CompletableFuture<String> completableFuture
 = CompletableFuture.completedFuture("hello world");

 System.out.println("result is " + completableFuture.get());
}

public static void main(String[] args) throws ExecutionException, InterruptedException {
 noComputation();
}

result is hello world

2.2 封装有返回值的异步计算逻辑

这是我们最常用的方式。把需要异步计算的逻辑封装为一个计算单元，交由 CompletableFuture 去运行。如下面的

代码：

这里我们使用了 CompletableFuture 的 supplyAsync 方法，以 lambda 表达式的方式向其传递了一个 supplier 接口

的实现。supplier 是只有一个方法的函数接口，这里使用的就是常说的函数式编程。关于函数式编程并不在本专栏

讨论范围内，这里你只需要知道我们为 supplyAsync 方法传入了一个可执行的函数，而 “Hello world” 就是这段函数

的返回值。我们运行后结果如下：

可见 completableFuture.get() 拿到的计算结果就是你传入函数执行后 return 的值。那么如果你有需要异步计算的逻

辑，那么就可以放到 supplyAsync 传入的函数体中。这段函数是如何被异步执行的呢？如果你跟入代码可以看到其

实 supplyAsync 是通过 Executor，也就是线程池来运行这段函数的。completableFuture 默认使用的是

ForkJoinPool，当然你也可以通过为 supplyAsync 指定其他 Excutor，通过第二个参数传入 supplyAsync 方法。

supplyAsync 使用场景非常多，举个简单的例子，主程序需要调用多个微服务的接口请求数据，那么就可以启动多

个 CompletableFuture，调用 supplyAsync，函数体中是关于不同接口的调用逻辑。这样不同的接口请求就可以异

步同时运行，最后再等全部接口返回时，执行后面的逻辑。

2.3 封装无返回值的异步计算逻辑

supplyAsync 接收的函数是有返回值的。有些情况我们只是一段计算过程，并不需要返回值。这就像 Runnable 的

run 方法，并没有返回值。这种情况我们可以使用 runAsync方法，如下面的代码：

runAsync 接收 runnable 接口的函数。所以并无返回值。栗子中的逻辑只是打印“挖坑完成”。

2.4 进一步处理异步返回的结果，并返回新的计算结果

public static void supplyAsync() throws ExecutionException, InterruptedException {
 CompletableFuture<String> completableFuture
 = CompletableFuture.supplyAsync(() -> "挖坑完成");

 System.out.println("result is " + completableFuture.get());
}

public static void main(String[] args) throws ExecutionException, InterruptedException {
 supplyAsync();
}

result is 挖坑完成

public static void runAsync() throws ExecutionException, InterruptedException {
 CompletableFuture<Void> completableFuture
 = CompletableFuture.runAsync(() -> System.out.println("挖坑完成"));

 completableFuture.get();
}

public static void main(String[] args) throws ExecutionException, InterruptedException {
 supplyAsync();
}

当我们通过 supplyAsync 完成了异步计算，返回 CompletableFuture，此时可以继续对返回结果进行加工，如下面

的代码：

在调用 supplyAsync 后，我们两次链式调用 thenApply 方法。s 是前一步 supplyAsync 返回的计算结结果，我们对

结算结果进行了两次再加工，输出如下：

我们可以通过 thenApply 不断对计算结果进行加工处理。

如果想异步运行 thenApply 的逻辑，可以使用 thenApplyAsync。使用方法 xiangtong1，只不过会通过线程池异步运

行.

2.5 进一步处理异步返回的结果，无返回

这种场景你可以使用thenApply。这个方法可以让你处理上一步的返回结果，但无返回值。参照如下代码：

这里可以看到 thenAccept 接收的函数没有返回值，只有业务逻辑。处理后返回 CompletableFuture 类型对象。

2.6 既不需要返回值，也不需要上一步计算结果，只想在执行结束后再执行一段代码

此时你可以使用 thenRun 方法，他接收 Runnable 的函数，没有输入也没有输出，仅仅是在异步计算结束后回调一

段逻辑，比如记录 log 等。参照下面代码：

 public static void thenApply() throws ExecutionException, InterruptedException {
 CompletableFuture<String> completableFuture
 = CompletableFuture.supplyAsync(() -> "挖坑完成")
 .thenApply(s->s+",并且归还铁锹")
 .thenApply(s->s+"，全部完成。");

 System.out.println("result is " + completableFuture.get());
 }

 public static void main(String[] args) throws ExecutionException, InterruptedException {
 thenApply();
 }

result is 挖坑完成,并且归还铁锹，全部完成。

public static void thenAccept() throws ExecutionException, InterruptedException {
 CompletableFuture<Void> completableFuture
 = CompletableFuture.supplyAsync(() -> "挖坑完成")
 .thenAccept(s-> System.out.println(s+",并且归还铁锹"));
 completableFuture.get();
}

public static void main(String[] args) throws ExecutionException, InterruptedException {
 thenAccept();
}

可以看到在 thenAccept 之后继续调用了 thenRun，仅仅是打印了日志而已，输出如下：

2.7 组合 Future 处理逻辑

我们可以把两个 CompletableFuture 组合起来使用，如下面的代码：

运行结果

thenApply 和 thenCompose 的关系就像 stream中的 map 和 flatmap。从上面的例子来看，thenApply 和

thenCompose 都可以实现同样的功能。但是如果你使用一个第三方的库，有一个API返回的是CompletableFuture

类型，那么你就只能使用 thenCompose方法。

2.8 组合Futurue结果

如果你有两个异步操作互相没有依赖，但是第三步操作依赖前两部计算的结果，那么你可以使用 thenCombine 方法

来实现，如下面代码：

挖坑和拿树苗可以同时进行，但是第三步植树则祖尧前两步完成后才能进行。执行结果如下：

public static void thenRun() throws ExecutionException, InterruptedException {
 CompletableFuture<Void> completableFuture
 = CompletableFuture.supplyAsync(() -> "挖坑完成")
 .thenAccept(s-> System.out.println(s+",并且归还铁锹"))
 .thenRun(()-> System.out.println("挖坑工作已经全部完成"));

 completableFuture.get();
}

public static void main(String[] args) throws ExecutionException, InterruptedException {
 thenRun();
}

挖坑完成,并且归还铁锹
挖坑工作已经全部完成

public static void thenCompose() throws ExecutionException, InterruptedException {
 CompletableFuture<String> completableFuture
 = CompletableFuture.supplyAsync(() -> "挖坑完成")
 .thenCompose(s -> CompletableFuture.supplyAsync(() -> s + " 并且归还铁锹"));

 System.out.println("result is " + completableFuture.get());
}

result is 挖坑完成 并且归还铁锹

public static void thenCombine() throws ExecutionException, InterruptedException {
 CompletableFuture<String> completableFuture
 = CompletableFuture.supplyAsync(() -> "挖坑完成。")
 .thenCombine(CompletableFuture.supplyAsync(() -> "拿树苗完成。"),
 (a,b)-> a+b+"植树完成。");

 System.out.println("result is " + completableFuture.get());
}

public static void main(String[] args) throws ExecutionException, InterruptedException {
 thenCombine();
}

可以看到符合我们的预期。使用场景之前也提到过。我们调用多个微服务的接口时，可以使用这种方式进行组合。

处理接口调用间的依赖关系。

当你需要两个 Future 的结果，但是不需要再加工后向下游传递计算结果时，可以使用 thenAcceptBoth，用法一

样，只不过接收的函数没有返回值。

2.9 并行处理多个 Future

假如我们对微服务接口的调用不止两个，并且还有一些其它可以异步执行的逻辑。主流程需要等待这些所有的异步

操作都返回时，才能继续往下执行。此时我们可以使用 CompletableFuture.allOf 方法。它接收 n 个

CompletableFuture，返回一个 CompletableFuture。对其调用 get 方法后，只有所有的 CompletableFuture 全完成

时才会继续后面的逻辑。我们看下面示例代码：

输出结果为：

result is 挖坑完成。拿树苗完成。植树完成。

public static void allOf() throws ExecutionException, InterruptedException {
 CompletableFuture<Void> future1 = CompletableFuture.runAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.println("挖坑完成");
 });
 CompletableFuture<Void> future2 = CompletableFuture.runAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(5);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.println("取树苗完成");
 });
 CompletableFuture<Void> future3 = CompletableFuture.runAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(3);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("取肥料完成");
 });

 CompletableFuture.allOf(future1,future2,future3).get();

 System.out.println("植树准备工作完成！");

}

public static void main(String[] args) throws ExecutionException, InterruptedException {
 allOf();
}

挖坑完成

取肥料完成

取树苗完成

植树准备工作完成！


33 分阶段执行你的任务-学习使用
Phaser运行多阶段任务 

35拆分你的任务—学习使用
Fork/Join框架

可以看到三个 CompletableFuture 全部完成后，才会打印“植树准备工作完成！”。

2.10 异常处理

在异步计算链中的异常处理可以采用 handle 方法，它接收两个参数，第一个参数是计算及过，第二个参数是异步

计算链中抛出的异常。使用方法如下：

代码中会抛出一个 RuntimeException，抛出这个异常时 result 为 null，而 throwable 不为null。根据这些信息你可以

在 handle 中进行处理，如果抛出的异常种类很多，你可以判断 throwable 的类型，来选择不同的处理逻辑。

3、总结

本节我们学习了 CompletableFuture 的常见用法，它的方法远不止这些，其它的方法大家可以参照文档进行学习。

在实际开发中，我推荐使用 CompletableFuture 进行异步计算，它更为灵活，并且可以采用 lambda 表达式进行函

数式编程，代码更为简洁，可读性也更高。

}

public static void errorHandling() throws ExecutionException, InterruptedException {
 CompletableFuture<String> completableFuture
 = CompletableFuture
 .supplyAsync(() -> {
 if (1 == 1) {
 throw new RuntimeException("Computation error!");
 }

 return "挖坑完成";
 })
 .handle((result, throwable) -> {
 if (result == null) {
 return "挖坑异常";
 }
 return result;
 });

 System.out.println("result is " + completableFuture.get());
}

public static void main(String[] args) throws ExecutionException, InterruptedException {
 errorHandling();
}

	1、CompletableFuture 介绍
	2、CompletableFuture 介绍
	2.1 已知计算结果
	2.2 封装有返回值的异步计算逻辑
	2.3 封装无返回值的异步计算逻辑
	2.4 进一步处理异步返回的结果，并返回新的计算结果
	2.5 进一步处理异步返回的结果，无返回
	2.6 既不需要返回值，也不需要上一步计算结果，只想在执行结束后再执行一段代码
	2.7 组合 Future 处理逻辑
	2.8 组合Futurue结果
	2.9 并行处理多个 Future
	2.10 异常处理

	3、总结

