36 NZ LR HE— i & H —Master/Slavet® R, fif

g 2019-12-24 14:13:05

B 51 RAEAAT S AR 2 A, TR AP AR,

HI AP ForkJoinPool 52 73 1M 2 (AR . A RIA TR 222 2T 1) Master/Slave 52 FIFEH)E 4. Hrp Master
TR KIS, A5 ERMRYE— & R RS IFHC A TAIMES, RN kK4 —4 Slave. 4
Slave 5EMAESs)E ElE QRS el il . 24FifT Slave #R5e/k 1T A CAES T, Master thahsepl 7 H CkfE
% . Master {32 Slave &8, fMHCHES K FE, 1M Slave ML ARG 1A € LK.

1. Master/Slave # % it

1.1 Master it

7£ Master/Slave #zH, —4~ Master #5 —4 Slave)5 . Master X} 428 — N RS)52 startTask.
XL Master (=8 J7E, N EM T 0 35

{1 slave
T8 Slave ZFE B s EE LB s, B DUSCEIFRATAT 55 IR 58 7 B IE 244
3 RALS

& Task #ATHRSr, R0 KEHA Slave;

R EEF AT EM, 4 ilTe il WA

file:///read/49/article/968
javascript:;

ARESEERES

iR RS PATE R
AT LU B DY AT {202 B 3 IS BT o
1.2 Slave it
THEEANHEFE Slave B

Slave 4k7K [Thread. i@t %ER\%1 BlockingQueue {547 Task. XAELEBUT LI N B O w s, W4xpH%E
St BAH S submitTask FISRIERZFATS, XANTIELE Master 73 BALSI A AMER run J7ik N
BlockingQueue H U355 3047 . $AT 45 R J5 18 %1 Master.

DL R & AR E RN, H Master B4, DEUTS, IRRTSXLINGEREAN, i Master BH
AE JTHNETE TAE S AT 5258, 1 Slave NIFFBEAW AT T4, FEAPIT. PUTEEREBIEHATES RREIS %
Master. # it K

174
subTask

HLRR A%, AEZEE RN, NIt — A/ Mis, KESZ— T~ Master/Slave £,

2. Master/Slave tH2 74

2.1 Client {74

ANHITE R IR LR AR LRI UE L 2 T R ZE B R BT R . AR IE UG R, IE AT 2RI 1)
#17, F Master/Slave 77 R ks2I'e . BATXIKIEHE Client (L

public class Client {
public static void main(String[] args) throws InterruptedException {
Task task = new Task(123,"internationalization”);

Master master = new Master();
master.startTask(task);

master.printResult();

FrA R s, Al — N 5 Task, sR)5iE Master SR#UT, &G EIPATER.
2.2 Task A4

Task AU, HHET get ik :

public class Task {
IS (R
private int copyCount;
IS 5T 6
private int from;
IS W5 450
private int to;
A () 5]
private String word;

public Task(int copyCount, int from, int to, String word) {
this.copyCount = copyCount;
this.word = word;
this from = from;
this.to = to;

public Task(int copyCount, String word) {
this.copyCount = copyCount;
this.word = word;
this from = 1;
this.to = copyCount;

B R RIEATEFE Master 115

2.3 Master {{i%
FA VKB F Master 4 15 LL & 1 .

IMRAE TG 1 SlaveZk 4

private List<Slave> slaves;

IIslavelt) %=

private static final int SLAVES_COUNT = 8;

IFAE5AR 5 1 1

private static final int SUB_TASK_SIZE = 4;

I5E AR SS B . %A Slavesk F2#52 Bp L3R, B A F AtomicZE
private Atomiclnteger finishedTaskCount = new Atomicinteger(0);
IBATEER, key NEFEA T, valueyIh 2 F2 78 i (i Al i

private ConcurrentHashMap<String, Integer> results;

A LAEF| Master ¥7H —4 slave &2, HRANETE. RIIMWMESRRIEAYE, 80 T71%H SUB_TASK SIZE
KAEHN AN IMES P B IR . TN 552 UG & F # finishedTaskCount 1 results f$§1F 45 5¢ i 5% .

Master X} #MEAE T 40T J7id::

NETTE, HTHPITAES

public ConcurrentHashMap<String, Integer> startTask(Task task)

11F- 77158 i nMasterd 22 56 il ic &

public void subTaskFinished(String slaveName, int finishedSubTaskCount)
5T ERAT 45 51

public void printResult()

REATT R EEN S startTask, Master 2 AT AL R, AMEUT.

public ConcurrentHashMap<String, Integer> startTask(Task task) throws InterruptedException {

111 Bl gslave
createSlaves(this);

112 5y AL S
splitAndAssignTask(task);

113 SEfpah P b
checkTaskFinished(task);

11 4 3R [b B 55 SR

return results;

startTask P EEH=AT7E, BEREPATER. B TFOEERRAR, BrLlfEME Master B H5A (8
Slave, TMiZIEEF| startTask HImHEFEGIE: . splitAndAssignTask (I F 5 RZIE KM task #4 B IR ZHAFIT,

9y R4 slave 14T . checkTaskFinished £ 4CERT 7 task MIHATIE DL, MAETERET, AT R P return 4],

KU TNERAREE, I RBAT—AE.

2.3.1 createSlaves /5%

private void createSlaves(Master master) {
if(slaves.size()==0){
IntStream .range(0, this. SLAVES_COUNT).forEach(count ->
slaves.add(new Slave("slave " + count, master))

);

slaves.forEach(slave -> {
slave start();
)%
}
}

XA LB AT B, AR AN SLAVES COUNT A slave, RJ5 BT k.

2.3.2 splitAndAssignTask 771

private void splitAndAssignTask(Task task) throws InterruptedException {
int count = task getCopyCount();
int start = 1;
List<Task> subTasks = new ArrayList<>();
374> task
while (start <= count) {
intend = count + 1;

if (start + SUB_TASK_SIZE <= count) {
end = start + SUB_TASK_SIZE;
}

subTasks add(new Task(end-start, start, end, task.getWord()));

start = end;

1153y} subTask
for (inti= 0; i< subTasks.size(); i++) {
int slavelndex = i % SLAVES_COUNT;
slaves.get(slavelndex).submitTask(subTasks.get(i));

}

}

RANTTVEM T RS, — &1 task 54 £ subTask. — 24 subTask 43 &% slave #4T. subTask 1%
77 % copy [#E, LK copy 1 from FF 5l to 555 . M44RIEHE B 1) #i .

2.3.3 checkTaskFinished
XA TTVEH SR task & 754 3T 58 o

private void checkTaskFinished(Task task) throws InterruptedException {
while (true) {
if (task.getCopyCount() == finishedTaskCount.get()) {
finished();

break;

TimeUnit. MILLISECONDS :sleep(200);

T ARG 5 Aok IG task 1 copy MEURIE e E finishedTaskCount 275 —#, 15— %056 8
task &4 EM, A finished 77 TAEMURE, BEHIEFR.

2.3.4 subTaskFinished

Master ¥ 1 X JLNHEEA —NITEN T F AR SHATE R . AR5 HF:

public void subTaskFinished(String slaveName, int finishedSubTaskCount) {
Integer count = results.get(slaveName);
if(count==null){
results.put(slaveName finishedSubTaskCount);
telse{
results.put(slaveName,count+finishedSubTaskCount);

-

finishedTaskCount.getAndAdd(finishedSubTaskCount);

B BATE RN results, W EEAAE, WHAT R, AN finishedTaskCount.

Master [FEE L LN H5ee, FEEITRERE Slave.

2.4 Slave {1%

Slave 2 — AN TAEMZIE, ©4k&H Thread 2%,

public class Slave extends Thread

AL EE Slave)@ ME:

IIslave) £ fE 4+

private String name;

¥ master5| H, 975 2 nimasterf@ 58 AT 45 %
private Master master;

1P 2E BA 31 SR A 7 task

private BlockingQueue<Task> tasks;

slave HHEEFE A TTE, —ANRIRAC task 7775 submitTask, fRALLNT -

public void submitTask(Task task) throws InterruptedException {
tasks .put(task);

}

AR f7 B, S 1] B ZEBASI TN task.

Slave $47 task HIZHLE run J7i%, Slave 467K 3 Thread, St EzhfE, run FiEmSyAA . ARSI .

@Override
public void run() {
try {
while (true) {

Task task = tasks.take();

IntStream.range(task.getFrom(), task.getTo()).forEach(
count -> System.out.printin(String.format("2L 12 %s 2 %df 5 1111 %s ", name, count, task.getWord()))
)

master.subTaskFinished(name, task.getCopyCount());

}

} catch (InterruptedException e) {
System.out.println(String.format ("2 £ %s #4111, name));
}
}

X BEARRE AW R A BHSERAF1H take H task. WIERA task, HiFHZETEI. SRJGHRIE task WA IHEATHIH . AT
JE A master (1) subTaskFinished 7773t H CLRIHAT 45 IR 3T 45 master. W05 BHZE [(4 4T B, 4T ERH H

+
iCho

3. PATE R

7£ Client] main J7iEFFATE B 7 —4 task = new Task (123, “internationalization”), #'5 internationalization .
w123 K. BT e AT

2k Fislave 155590 5 #iidinternationalization
i FEslave 5552195 Hiidlinternationalization
#Fislave 4317405 Hid internationalization
4 Fislave 25905 Hiidinternationalization
2 Fislave 555225 Hiiiinternationalization
#: fislave 3% 1345 Hiiiinternationalization
2 Fslave 0% 1405 Hidlinternationalization

Zk Fislave 25510740 5 Hiidinternationalization
#:fslave 0% 10090 5 Htirlinternationalization
#; Fislave 221087} 5 Hiidlinternationalization
RS A e k!

2 Fislave 44547 Ihr

e slave 0BT

2 M slave ¥ 1T

“Fslave 19T

#:FEslave THE T bt

2 Fslave 345 4T I

2 F2slave 5147 Il

£ Fslave 24T I

i Fislave 0,56 /% 7 161405

Zifislave 7,5C R T 120305

i Fislave 5,56 /% 1 161905

i Fslave 6,52 7 15105

i Fislave 3,58 % 1 161k 5

i fEslave 4,58 /% 7161405

Zifislave 1,58 T 161305

L Hislave 2,5 T 161K

e s T2t WTAE B TAIES e UG slave LARH AT . BG4I TN LR S IR, A
SN 1230 AT LI slave FTEDH &M T 4tit, HRITEN T 123 5. EefFadATHIUN.

4., H4

VIR = |

Master/Slave 02 M2 LRV —BH T IAES TR0 K . Master 1ER 1T SMRBEAT S BT
M, NI > R4 2 Slave 256 M. X — V)0 T & KU 2 IEH 1. Master/Slave B G R AE T4E
S RANEE RN BRIy AR R, AR5, Wl DosEd Ak se . ARSI T4
WA LAMEF Future. Bb4h, ARGt Master/slave ¥z, AT LLER) ZooKeeper K5:8l. 7£ Akka
i H] Actor tAESEHl Master/Slave . SERAEH H AT RIS F Rk A Cseil. AT A FFEEREXZ 0
RAR, AN TR A B AR R sE I 7 5.

Bt 58 ARG
Master fthiL:

public class Master
private List<Slave> slaves
private static final int SLAVES_COUNT =
private static final int SUB_TASK_SIZE =
private Atomiclnteger finishedTaskCount = new Atomicinteger
private ConcurrentHashMap<String, Integer> results

public Master
results = new ConcurrentHashMap<>

slaves = new ArrayLIst<>();

public ConcurrentHashMap<String, Integer> startTask(Task task) throws InterruptedException {

111 6% slave
createSlaves(this);

112 5y RATSs
splitAndAssignTask(task);

113 A5 S5 AL B
checkTaskFinished(task);

114 3R [m] A 3R 25 5
return results;

private void createSlaves(Master master) {
if (slaves.size() == 0) {
IntStream.range(0, this.SLAVES_COUNT).forEach(count ->
slaves.add(new Slave("slave " + count, master))

slaves.forEach(slave -> {
slave.start();

3

private void splitAndAssignTask(Task task) throws InterruptedException {
int count = task getCopyCount();
intstart = 1,
List<Task> subTasks = new ArrayList<>();
while (start <= count) {
intend = count + 1;

if (start + SUB_TASK_SIZE <= count) {
end = start + SUB_TASK_SIZE;

subTasks.add(new Task(end - start, start, end, task get\Word()));

start = end;

for (inti=0;i< subTasks.size(); i++) {
int slavelndex = i % SLAVES_COUNT;
slaves.get(slavelndex).submitTask(subTasks.get(i));

public void subTaskFinished(String slaveName, int finishedSubTaskCount) {
Integer count = results.get(slaveName);

if (count == null) {
results.put(slaveName, finishedSubTaskCount);
}else {
results.put(slaveName, count + finishedSubTaskCount);

finishedTaskCount.getAndAdd(finishedSubTaskCount);

private void checkTaskFinished(Task task) throws InterruptedException {
while (true) {
i (task.getCopyCount() == finishedTaskCount.get()) {
finished();

break;

TimeUnit. MILLISECONDS sleep(200);
}

private void finished() {
System.out.printin("{TL45 4= #5572 M L ");
slaves.forEach(slave -> slave.interrupt());
slaves.clear();

public void printResult() {
results.forEach((key, value) ->
System.out.printin(String.format("2% 4 %s, 7 i | %d /b 5", key, value)));

Slave ’fJQEEJ

public class Slave extends Thread {
private String name;

private Master master;
private BlockingQueue<Task> tasks;

public Slave(String name, Master master) {
this.name = name;
this.master = master;
this.tasks = new ArrayBlockingQueue<Task>(100);

public void submitTask(Task task) throws InterruptedException {
tasks.put(task);

@Override
public void run() {

try {
while (true) {
Task task = tasks.take();

IntStream.range(task.getFrom(), task.getTo()).forEach(
count -> System.out.printin(String.format ("2 74 %s &% %d{h 5 1111 %s ", name, count, task.getWord()))

master.subTaskFinished(name, task getCopyCount());

} catch (InterruptedException e) {
System out.printin(String.format("2 1 %s 4747 W", name));

Task fXi5:

public class Task {
private int copyCount;
private int from;
private int to;
private String word;

public Task(int copyCount, int from, int to, String word) {
this.copyCount = copyCount;
this.word = word;
this from = from;
this.to = to;

public Task(int copyCount, String word) {
this.copyCount = copyCount;
this.word = word;
this from = 1;
this.to = copyCount;

public int getCopyCount() {
return copyCount;

public String getWord() {
return word;

public int getFrom() {
return from;

public int getTo() {
return to;

Client X3 :

public class Client {
public static void main(String[] args) throws InterruptedException {
Task task = new Task(123,"internationalization”);

Master master = new Master();
master .startTask(task);

master.printResult();

354573 AR KT 55— 21 i 1)

s
Fork/JointE4 37 49 >

&

	1、Master/Slave 模式设计
	1.1 Master 设计
	1.2 Slave 设计

	2、Master/Slave 代码示例
	2.1 Client 代码
	2.2 Task 代码
	2.3 Master 代码
	2.3.1 createSlaves 方法
	2.3.2 splitAndAssignTask 方法
	2.3.3 checkTaskFinished
	2.3.4 subTaskFinished

	2.4 Slave 代码

	3、执行结果分析
	4、总结
	附完成代码

