
更新时间：2019-08-01 11:19:49

05 如何优化数据导入？

我们有时会遇到批量数据导入的场景，而数据量稍微大点，会发现导入非常耗时间。这篇文稿将介绍一些常用的加

快数据导入的方法。

1 一次插入多行的值

插入行所需的时间由以下因素决定（参考MySQL 5.7参考手册：8.2.4.1优化INSERT语句）

连接：30%

向服务器发送查询：20%

解析查询：20%

插入行：10% * 行的大小

插入索引：10% * 索引数

结束：10%

可发现大部分时间耗费在客户端与服务端通信的时间，因此可以使用 insert 包含多个值来减少客户端和服务器之间

的通信。我们通过实验来验证下一次插入多行与一次插入一行的效率对比。

1.1 准备测试表及数据

由于本次实验操作包含 drop 等危险操作，因此建议创建普通用户进行实验，并权限最小化，以防误操作。

天才就是百分之二的灵感，百分之九十八的汗水。

——爱迪生

grant select,insert,create,drop,index,alter on muke.* to 'test_user3'@'127.0.0.1' identified by 'userBcdQ19Ic';

https://dev.mysql.com/doc/refman/5.7/en/insert-optimization.html
file:///read/43/article/684
file:///read/43/article/686

这里对上面命令解释一下：

参数 解释

grant 这里包含了创建用户及赋权操作

select,insert,create,drop 赋予查询、写入、建表及删表的权限

on muke.* 只对muke这个database有这些权限

to
‘test_user3’@‘127.0.0.1’

用户名为test_user3，host为127.0.0.1，即test_user3只能在本机使用，如果MySQL服务端跟客户端不在同一台机
器上，则127.0.0.1替换成客户端ip地址

identified by
‘userBcdQ19Ic’ 用户密码为userBcdQ19Ic

创建测试表及写入数据，语句如下

1.2 导出一条 SQL 包含多行数据的数据文件

为了获取批量导入数据的 SQL，首先对测试表的数据进行备份，备份的 SQL 为一条 SQL 包含多行数据的形式

（执行环境为 Centos7 命令行）。

这里对上面 mysqldump 所使用到的一些参数做下解释：

参数 详解

-utest_user3 用户名，这里使用的是root用户

-p’userBcdQ19Ic’ 密码

-h127.0.0.1 连接的MySQL服务端IP

set-gtid-
purged=off 不添加SET @@GLOBAL.GTID_PURGED

–single-transaction 设置事务的隔离级别为可重复读，即REPEATABLE READ，这样能保证在一个事务中所有相同的查询读取到同样的数
据

–skip-add-locks 取消每个表导出之前加lock tables操作。

muke 库名

t1 表名

use muke; /* 使用muke这个database */

drop table if exists t1; /* 如果表t1存在则删除表t1 */

CREATE TABLE `t1` (/* 创建表t1 */
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `a` varchar(20) DEFAULT NULL,
 `b` int(20) DEFAULT NULL,
 `c` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB CHARSET=utf8mb4 ;

drop procedure if exists insert_t1; /* 如果存在存储过程insert_t1，则删除 */
delimiter ;;
create procedure insert_t1() /* 创建存储过程insert_t1 */
begin
 declare i int; /* 声明变量i */
 set i=1; /* 设置i的初始值为1 */
 while(i<=10000)do /* 对满足i<=1000的值进行while循环 */
 insert into t1(a,b) values(i,i); /* 写入表t1中a、b两个字段，值都为i当前的值 */
 set i=i+1; /* 将i加1 */
 end while;
end;;
delimiter ;
call insert_t1(); /* 运行存储过程insert_t1 */

[root@mysqltest muke]# mysqldump -utest_user3 -p'userBcdQ19Ic' -h127.0.0.1 --set-gtid-purged=off --single-transaction --skip-add-locks muke t1 >t1.
sql

t1.sql 导出数据到这个文件

参数 详解

查看文件 t1.sql 内容，可看到数据是单条 SQL 有多条数据，如下：

1.3 导出一条SQL只包含一行数据的数据文件

mysqldump命令参数解释：

参数 详解

–skip-extended-insert 一条SQL一行数据的形式导出数据

备份文件t1_row.sql内容如下

1.4 导入时间的对比

首先导入一行 SQL 包含多行数据的数据文件：

耗时0.2秒左右。

导入一条SQL只包含一行数据的数据文件：

耗时31秒左右。

1.5 结论

......
DROP TABLE IF EXISTS `t1`;
/* 按照上面的备份语句备份的数据文件包含drop命令时，需要特别小心，在后续使用备份文件做导入操作时，应该确定所有表名，防止drop掉业务正
在使用的表 */
......
CREATE TABLE `t1`......
......
INSERT INTO `t1` VALUES (1,'1',1,'2019-05-24 15:44:10'),(2,'2',2,'2019-05-24 15:44:10'),(3,'3',3,'2019-05-24 15:44:10')......
......

[root@mysqltest muke]# mysqldump -utest_user3 -p'userBcdQ19Ic' -h127.0.0.1 --set-gtid-purged=off --single-transaction --skip-add-locks --skip-extend
ed-insert muke t1 >t1_row.sql

......
INSERT INTO `t1` VALUES (1,'1',1,'2019-05-24 15:44:10');
INSERT INTO `t1` VALUES (2,'2',2,'2019-05-24 15:44:10');
INSERT INTO `t1` VALUES (3,'3',3,'2019-05-24 15:44:10');
......

[root@mysqltest ~]# time mysql -utest_user3 -p'userBcdQ19Ic' -h127.0.0.1 muke <t1.sql

real 0m0.230s
user 0m0.007s
sys 0m0.003s

[root@mysqltest ~]# time mysql -utest_user3 -p'userBcdQ19Ic' -h127.0.0.1 muke <t1_row.sql

real 0m31.138s
user 0m0.088s
sys 0m0.126s

一次插入多行花费时间0.2秒，一次插入一行花费了31秒，对比效果明显，因此建议有大批量导入时，推荐一条

insert语句插入多行数据。

2 关闭自动提交

2.1 对比开启和关闭自动提交的效率

Autocommit 开启时会为每个插入执行提交。可以在InnoDB导入数据时，关闭自动提交。如下：

使用1.3 生成的t1_row.sql，在insert前增加：

在insert语句后面增加：

开启自动提交的情况下导入是31秒（执行详情见1.4 导入时间的对比）。

关闭自动提交的情况下导入是1秒左右，因此导入多条数据时，关闭自动提交，让多条 insert 一次提交，可以大大

提升导入速度。

2.2 原因分析

与本节前面讲的一次插入多行能提高批量插入速度的原因一样，因为批量导入大部分时间耗费在客户端与服务端通

信的时间，所以多条 insert 语句合并提交可以减少客户端与服务端通信的时间，并且合并提交还可以减少数据落盘

的次数。

3 参数调整

影响MySQL写入速度的主要两个参数：innodb_flush_log_at_trx_commit、sync_binlog。

3.1 参数解释

innodb_flush_log_at_trx_commit：控制重做日志刷新到磁盘的策略，有0 、1和2三种值。

0：master线程每秒把redo log buffer写到操作系统缓存，再刷到磁盘；

1：每次提交事务都将redo log buffer写到操作系统缓存，再刷到磁盘；

2：每次事务提交都将redo log buffer写到操作系统缓存，由操作系统来管理刷盘。

SET autocommit=0;
INSERT INTO `t1` VALUES (1,'1',1,'2019-05-24 15:44:10');
INSERT INTO `t1` VALUES (2,'2',2,'2019-05-24 15:44:10');
INSERT INTO `t1` VALUES (3,'3',3,'2019-05-24 15:44:10');
......
COMMIT;

SET autocommit=0;

COMMIT;

[root@mysqltest muke]# time mysql -utest_user3 -p'userBcdQ19Ic' -h127.0.0.1 muke <t1_row.sql

real 0m1.036s
user 0m0.062s
sys 0m0.108s

备注：具体原理会在后续的事务这章进行详细描述。

sync_binlog：控制binlog的刷盘时机，可配置0、1或者大于1的数字。

0：二进制日志从不同步到磁盘，依赖OS刷盘机制；

1：二进制日志每次提交都会刷盘；

n(n>1) : 每n次提交落盘一次。

3.2 写入速度测试

为了对比以上两个参数对MySQL写入速度的影响，我们通过压力工具sysbench测试写入速度。

sysbench安装及使用请参考：http://imysql.cn/node/312。

第一步：设置两个参数的值：

第二步：准备数据：

第三步：进行写入测试：

正式环境压测建议压半小时以上。

mysql> set global innodb_flush_log_at_trx_commit=1;
Query OK, 0 rows affected (0.01 sec)

mysql> set global sync_binlog=1;
Query OK, 0 rows affected (0.00 sec)

[root@mysqltest ~]# sysbench --test=/usr/share/sysbench/tests/include/oltp_legacy/insert.lua --mysql-user=test_user3 --mysql-password='userBcdQ1
9Ic' --mysql-host=127.0.0.1 --mysql-db=muke --oltp-table-size=0 --oltp-tables-count=10 prepare

[root@mysqltest ~]# sysbench --test=/usr/share/sysbench/tests/include/oltp_legacy/insert.lua --mysql-user=test_user3 --mysql-password='userBcdQ1
9Ic' --mysql-host=127.0.0.1 --mysql-db=muke --oltp-table-size=100000 --max-time=100 --oltp-tables-count=10 run

http://imysql.cn/node/312%25E3%2580%2582

第四步：记录测试结果：

第五步：清除压测数据：

测试结果如下：

innodb_flush_log_at_trx_commit sync_binlog TPS 结论

1 1 316.83 双一情况写入速度最慢

1 0 526.97

0 1 497.42

0 0 2379.9 都设置为0的情况下，写入速度最快

2 1 515.76

2 0 2169.51

3.3 结论

从实验结果可以看出，innodb_flush_log_at_trx_commit设置为0、同时sync_binlog设置为0时，写入数据的速度是最

快的。如果对数据库安全性要求不高(比如你的测试环境)，可以尝试都设置为0后再导入数据，能大大提升导

入速度。

4 总结

今天一起研究了怎样提高 MySQL 批量导入数据的速度。根据测试，总结了加快批量数据导入有如下方法：

一次插入多行的值；

关闭自动提交，多次插入数据的 SQL 一次提交；

调整参数，innodb_flush_log_at_trx_commit 和 sync_binlog 都设置为0（当然这种情况可能会丢数据）。

5 问题

你一般工作中使用什么方法加快大批量数据导入的速度？

[root@mysqltest ~]# sysbench --test=/usr/share/sysbench/tests/include/oltp_legacy/insert.lua --mysql-user=test_user3 --mysql-password='userBcdQ1
9Ic' --mysql-host=127.0.0.1 --mysql-db=muke --oltp-table-size=100000 --oltp-tables-count=10 cleanup


04 条件字段有索引，为什么查询
也这么慢? 06 让order by、group by查询更快

6 参考资料

唐汉明 等著；深入浅出MySQL（第2版）：18.4.2 优化INSERT语句

MySQL 5.7参考手册：8.2.4.1优化INSERT语句

sysbench的安装和做性能测试：http://imysql.cn/node/312

}

https://dev.mysql.com/doc/refman/5.7/en/insert-optimization.html
http://imysql.cn/node/312

	1 一次插入多行的值
	1.1 准备测试表及数据
	1.2 导出一条 SQL 包含多行数据的数据文件
	1.3 导出一条SQL只包含一行数据的数据文件
	1.4 导入时间的对比
	1.5 结论

	2 关闭自动提交
	2.1 对比开启和关闭自动提交的效率
	2.2 原因分析

	3 参数调整
	3.1 参数解释
	3.2 写入速度测试
	3.3 结论

	4 总结
	5 问题
	6 参考资料

