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09 为何count(*)这么慢?

比如你维护着一张电商订单表，业务的需求是查找所有订单数，开发很快能写出对应的 SQL ：

但你是否会发现，如果这张表很大后，这条 SQL 会非常耗时。

今天我们就一起重新认识下 count()，并想办法去优化这类 SQL。

老规矩，先创建测试表并写入数据。

书是人类进步的阶梯。

——高尔基

select count(*) from order_01;
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1 重新认识 count()
1.1 count(a) 和  count(*) 的区别

当 count() 统计某一列时，比如 count(a)，a 表示列名，是不统计 null 的。

比如测试表 t1，我们插入了字段 a 为 null 的数据，我们来对 a 做一次 count()：

实际在数据写入时，写入了 10002 行数据。因此，对 a 字段为 null 的这一行不做统计。

use muke; /* 使用muke这个database */
drop table if exists t1; /* 如果表t1存在则删除表t1 */

CREATE TABLE `t1` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `a` int(11) DEFAULT NULL,
  `b` int(11) NOT NULL,
  `c` int(11) DEFAULT NULL,
  `d` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_a` (`a`),
  KEY `idx_b` (`b`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4;

drop procedure if exists insert_t1; /* 如果存在存储过程insert_t1，则删除 */
delimiter ;;
create procedure insert_t1() /* 创建存储过程insert_t1 */
begin
declare i int; /* 声明变量i */
set i=1; /* 设置i的初始值为1 */
while(i<=10000)do /* 对满足i<=10000的值进行while循环 */
insert into t1(a,b,c,d) values(i,i,i,i); /* 写入表t1中a、b两个字段，值都为i当前的值 */
set i=i+1; /* 将i加1 */
end while;
end;;
delimiter ; /* 创建批量写入10000条数据到表t1的存储过程insert_t1 */
call insert_t1(); /* 运行存储过程insert_t1 */

insert into t1(a,b,c,d) values (null,10001,10001,10001),(10002,10002,10002,10002);

drop table if exists t2; /* 如果表t2存在则删除表t2 */
create table t2 like t1; /* 创建表t2，表结构与t1一致 */
alter table t2 engine =myisam; /* 把t2表改为MyISAM存储引擎 */
insert into t2 select * from t1;  /* 把t1表的数据转到t2表 */

CREATE TABLE `t3` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `a` int(11) DEFAULT NULL,
  `b` int(11) NOT NULL,
  `c` int(11) DEFAULT NULL,
  `d` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB  CHARSET=utf8mb4;
insert into t3 select * from t1;  /* 把t1表的数据转到t3表 */

select count(a) from t1;



而 count(*) 无论是否包含空值，都会统计。

我们对测试表 t1 执行一次 count(*):

显然，统计的是所有的行。因此，如果希望知道结果集的行数，最好使用 count(*)。

1.2 MyISAM 引擎和  InnoDB 引擎  count(*) 的区别

对于 MyISAM 引擎，如果没有 where 子句，也没检索其它列，那么 count(*) 将会非常快。因为 MyISAM 引擎会把

表的总行数存在磁盘上。

首先我们看下对 t2 表（存储引擎为 MyISAM）不带 where 子句做 count(*) 的执行计划：

在 Extra 字段发现 “Select tables optimized away” 关键字，表示是从 MyISAM 引擎维护的准确行数上获取到的统

计值。

而 InnoDB 并不会保留表中的行数，因为并发事务可能同时读取到不同的行数。所以执行 count(*) 时都是临时去

计算的，会比 MyISAM 引擎慢很多。

我们看下对 t1 表（存储引擎为 InnoDB）执行 count(*) 的执行计划：

发现使用的是 b 字段的索引 idx_b，并且扫描行数是10109，表示会遍历 b 字段的索引树去计算表的总量。

对比 MyISAM 引擎和 InnoDB 引擎 count(*) 的区别，可以知道：

MyISAM 会维护表的总行数，放在磁盘中，如果有 count(*) 的需求，直接返回这个数据

但是 InnoDB 就会去遍历普通索引树，计算表数据总量

在上面这个例子，InnoDB 表 t1 在执行 count(*) 时，为什么会走 b 字段的索引而不是走主键索引呢？下面我们分析

下：

1.3 MySQL 5.7.18 前后  count(*) 的区别

在 MySQL 5.7.18 之前，InnoDB 通过扫描聚簇索引来处理 count(*) 语句。

select count(*) from t1;

explain select count(*) from t2;



从 MySQL 5.7.18 开始，通过遍历最小的可用二级索引来处理 count(*) 语句。如果不存在二级索引，则扫描聚簇索

引。但是，如果索引记录不完全在缓存池中的话，处理 count(*) 也是比较久的。

新版本为什么会使用二级索引来处理 count(*) 语句呢？

原因是 InnoDB 二级索引树的叶子节点上存放的是主键，而主键索引树的叶子节点上存放的是整行数据，所以二级

索引树比主键索引树小。因此优化器基于成本的考虑，优先选择的是二级索引。所以 count(主键) 其实没 count (*)

快。

1.4 count(1) 比  count(*) 快吗？

在前面我们知道 count(*) 无论是否包含空值，所有结果都会统计。

而 count(1)中的 1 是恒真表达式，因此也会统计所有结果。

所以 count(1) 和 count(*) 统计结果没差别。

我们来对比 count(1) 和 count(* ) 的执行计划：

执行计划一样，所以 count(1) 并不比 count(*) 快。

重新认识 count() 之后，你是否有了一些 count() 的优化思路呢？

下面一起讨论下 count() 优化：

2 哪些方法可以加快 count()
2.1 show table status

有时，我们只需要知道某张表的大概数据量，这种情况就可以使用 show table status，具体用法如下：

show table status like 't1';



如上图，Rows 这列就表示这张表的行数。这种方式获取 InnoDB 表的行数非常快。

但是，这个值是个估算值，可能与实际值相差 40% 到 50%。（对于 Rows 这个字段更详细的解释，可以参考官

方手册：https://dev.mysql.com/doc/refman/5.7/en/show-table-status.html）

所以，如果需要比较精确的表记录总数，此方法就行不通了。

2.2 用  Redis 做计数器

在有些业务场景，对于某一张表，count() 可能会频繁用到，直接执行 count(*) 可能会比较慢，并且影响数据库性

能；使用 show table status 又不准确，此时可以考虑结合 Redis 做计数器。用法大致如下：

首先初始化时，执行一次精确计数：

表此时的总数是 10002，把这个值赋给 Redis 中一个 key，命令如下：

当表 t1 写入一条数据时：

把 Redis 中 t1_count 这个 key 的值加 1，命令如下：

select count(*) from t1;

set   t1_count  10002

insert into t1(a,b,c,d) values (10003,10003,10003,10003);

INCR t1_count

https://dev.mysql.com/doc/refman/5.7/en/show-table-status.html%25EF%25BC%2589


当表 t1 删除一条数据时：

把 Redis 中 t1_count 这个 key 的值减 1，命令如下：

而业务需要查找表 t1 数据量时，只要到 Redis 中执行：

这里对 Redis 的计数做一些补充：

INCR t1_count 表示为键 t1_count 存储的数字值加 1

DECR t1_count 表示为键 t1_count 存储的数字值减 1

如果一次需要增加或者删除多行，用法如下：

表示一次为键 t1_count 存储的数字值加 10。

表示一次为键 t1_count 存储的数字值减 10。

通过 Redis 计数的方式，获取表的数据量比 show table status 准确，并且速度也比较快。

但是这种方法还是有缺点的。试想，在表 t1 写入数据到 Redis ，再到把 t1_count 加 1，总会存在一个时间差，如

果这中间另外一个 session 去读取 Redis 中 t1_count 的值，此时 t1_count 的值没增加，但是表的实际数据行已经

增加了，是不是结果就不准确了呢？我们在看下有没有更好的办法？

2.3 增加计数表

还是按照 2.2 中的方式，只是计数这一步操作我们用 MySQL 中一张 InnoDB 表来代替。

而数据写入操作和计数操作都放在一个事务中，就可以避免 2.2 中出现计数不准确的情况。

delete from t1 where id=10003;

DECR t1_count

get t1_count

INCRBY t1_count 10

DECRBY t1_count 10



我们通过下图来看下计数整个过程：

因为放在同一个事务里，在图中 1 这个位置点，因为事务还没提交，所以表 t1 写入一条记录本身就对其它 session

不可见，此时其它 session 去执行 select count(*) from t1 和查计数表 count_t1 的记录都是一样的，为 101 。不会

出现用 Redis 计数时，表实际总数与计数器的值不一致的情况。

3 总结

本节首先讲解了 count(a) 和 count(*) 的区别。曾经遇到过这种情况，某个同事想要统计表的数据总量，因为考虑到

某个字段（比如字段名就是 a 吧）有索引，就写成了 select count(a)，碰巧 a 字段存在 null，导致结果不准确。

然后对比了 MyISAM 引擎和 InnoDB 引擎 count(*) 的区别，也说明了为什么 MyISAM 引擎执行count(*) 可以这么

快，并提到了使用二级索引来处理 count(*) 语句比使用主键索引处理 count(*) 效率更高。还有就是 count(1) 和

count(*) 其实执行效率差不多。

后面提到几种优化 count() 的方式：

show table status：能快速获取结果，但是结果不准确；

用 Redis 做计数器：能快速获取结果，比 show table status 结果准确，但是并发场景计数可能不准确；

增加 InnoDB 计数表：能快速获取结果，利用了事务特性确保了计数的准确，也是比较推荐的方法。

4 问题

对于本节的测试表 t1，我们如果按照下面这条 SQL 统计表的总数据量，得到的值会准确吗？

注意，a 字段存在 null。

你可以通过实验验证一下，欢迎将你的理解写在留言中。

select count(*) from t1 force index (idx_a);



 08 Join语句可以这样优化 
10 为什么添加索引能提高查询速

度?
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