
更新时间：2019-09-10 09:48:25

17 间隙锁的意义

上节我们聊到了 RC 隔离级别的各种情况的锁，这节我们就来一起看看 RR 隔离级别各种情况下的锁，同时揭晓间

隙锁的意义。

在讲本节内容之前，我们先看看上一节课后问题的答案：

1 揭晓上一节课后问题的答案

在上一节中的最后，我提出的问题，你是否有答案了？

下面我们来验证一下：

session1 session2

set session transaction_isolation=‘READ-COMMITTED’;/* 设置会话隔
离级别为 RC*/

set session transaction_isolation=‘READ-COMMITTED’;/* 设置会话隔
离级别为 RC*/

begin; begin;

use muke;
select * from t16 where c=3 for update;

use muke;
insert into t16(a,b,c) values (5,5,3);
Query OK, 1 row affected (0.00 sec)

commit;

我们活着不能与草木同腐，不能醉生梦死，枉度人生，要有所作为。

——方志敏

file:///read/43/article/977
file:///read/43/article/698

select * from t16 where c=3 for update;

commit;

session1 session2

我们看一下上面的实验结果，在 session2 中，同一个事务中，按相同的查询条件重新读取以前检索过的数据，却

发现了 session1 插入的满足查询条件的新数据，这也就是上一节讲到的幻读情况。

为什么上面的实验中会出现幻读呢？

我们来看看下面这张图：

从图中可以看出，RC 隔离级别下，只锁住了满足 c=3 的当前行，而不会对后面的位置（或者说间隙）加锁，因此

导致 session1 的写入语句能正常执行并提交。

那么应该怎样避免幻读呢？

从上面的分析我们可以知道，产生幻读的原因是：行锁只能锁住当前行，但是新插入的记录，是在被锁住记录之前

的间隙。因此，为了解决幻读问题，InnoDB 在 RR 隔离级别下配置了间隙锁（Gap Lock）。

2 RR 隔离级别下的非唯一索引查询

我们继续看上面的实验，这里不同点是我们把隔离级别设置成 RR。

我们再单独建一张表，表结构与上节的表结构一致，为了方便后面分析，数据稍微有改动，语句如下：

开始 RR 隔离级别下的实验：

session1 session2

set session transaction_isolation=‘REPEATABLE-READ’;/* 设置会话
隔离级别为 RR*/

set session transaction_isolation=‘REPEATABLE-READ’;/* 设置会话
隔离级别为 RR*/

begin; begin;

use muke;
select * from t17 where c=4 for update;

use muke;
insert into t17(a,b,c) values (7,7,4); /* SQL1 */
（等待）

select * from t17 where c=4 for update;

insert into t17(a,b,c) values (7,7,4); /* SQL1 */
Query OK, 1 row affected (20.73 sec)
（等 session2 执行 commit; 后，SQL1 马上返回结果）

commit;

commit;

use muke;

drop table if exists t17;

CREATE TABLE `t17` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `a` int(11) NOT NULL,
 `b` int(11) NOT NULL,
 `c` int(11) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `uniq_a` (`a`) USING BTREE,
 KEY `idx_c` (`c`)
) ENGINE=InnoDB CHARSET=utf8mb4;

insert into t17(id,a,b,c) values (1,1,1,1),(2,2,2,2),(4,4,4,4),(6,6,6,4);

根据实验情况，我们在 session2 中，对满足条件 c=4 的数据加上了排他锁，然后在 session1 写入一条 c=4 的记

录，此时会出现等待，直到 session2 对事务进行提交后，session1 才会执行成功。这是为什么呢？我们来看下

图：

与 RC 隔离级别下的图相似，但是有个比较大的区别是：RR 隔离级别多了 GAP 锁。

如上图，首先需要考虑哪些位置可以插入新的满足条件 c=4 的项：

由于 B+ 树索引是有序的，因此 [2,2]（代表 c 和 id 的值，后面就不一一说明了）前面的记录，不可能插入 c=4

的记录了；

[2,2] 与 [4,4] 之间可以插入 [4,3]；

[4,4] 与 [4,6] 之间可以插入 [4,5]；

[4,6] 之后，可以插入的值就很多了：[4,n](其中 n>6) ；

为了保证这几个区间不会插入新的满足条件 c=4 的记录，MySQL RR 隔离级别选择了 GAP 锁，将这几个区间锁起

来。

而上面实验中，语句 insert into t17 (a,b,c) values (7,7,4) 其对应插入 c 和 id 的值为 [4,7]，是在最后这个被 GAP

Lock 锁住的区间，因此如上面实验，insert 操作会等待。

3 RR 隔离级别下的非索引字段查询

上一节中，我们测试了 RC 隔离级别下，非索引字段做条件的当前读会对所有记录都加锁。

这一节，我们测试一下 RR 隔离级别下，非索引字段做条件的当前读加锁情况。

首先对 t17 表中的数据做初始化：

session1 session2 session3

set session
transaction_isolation=‘REPEATABLE-
READ’;/* 设置会话隔离级别为 RR*/

set session
transaction_isolation=‘REPEATABLE-
READ’;/* 设置会话隔离级别为 RR*/

set session
transaction_isolation=‘REPEATABLE-
READ’;/* 设置会话隔离级别为 RR*/

begin;

use muke;
select * from t17 where b=1 for update;
…
1 row in set (0.00 sec)

use muke;
select * from t17 where b=2 for update;
（等待）

insert into t17(a,b,c) values (10,10,10);
（等待）

commit; select * from t17 where b=2 for update;
…
1 row in set (31.51 sec)
（session1 提交后，马上返回结果）

insert into t17(a,b,c) values (10,10,10);
Query OK, 1 row affected (8.08 sec)
（session1 提交后，马上写入）

可能你会问？为什么 session3 的 insert 会出现等待？

use muke;

drop table if exists t17;

CREATE TABLE `t17` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `a` int(11) NOT NULL,
 `b` int(11) NOT NULL,
 `c` int(11) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `uniq_a` (`a`) USING BTREE,
 KEY `idx_c` (`c`)
) ENGINE=InnoDB CHARSET=utf8mb4;

insert into t17(id,a,b,c) values (1,1,1,1),(2,2,2,2),(4,4,4,4),(6,6,6,4);

我们看看下图：

如图，所有记录都有 X 锁，除此之外，每个 GAP 也被加上了 GAP 锁。因此这张表在执行完 select * from t17

where b=1 for update; 到 commit 之前，除了不加锁的快照读，其它任何加锁的 SQL，都会等待，如果这是线上业

务表，那就是件非常恐怖的事情了。

总结：RR 隔离级别下，非索引字段做条件的当前读不但会把每条记录都加上 X 锁，还会把每个 GAP 加上

GAP 锁。再次说明，条件字段加索引的重要性。

4 RR 隔离级别下的唯一索引当前读是否会用到 GAP 锁

GAP 锁的目的是：为了防止同一事务两次当前读，出现幻读的情况。如果能确保索引字段唯一，那其实一个等值

查询，最多就返回一条记录，而且相同索引记录的值，一定不会再新增，因此不会出现 GAP 锁。

因此以唯一索引为条件的当前读，不会有 GAP 锁。所以 RR 隔离级别下的唯一索引当前读加锁情况与 RC 隔离级

别下的唯一索引当前读加锁情况一致。这里就不再实验了。

5 总结

本节讲解了 RC 隔离级别出现幻读的情况，而 RR 通过 GAP 锁解决了幻读，但是 RR 隔离级别相对于 RC，锁的

范围可能更大了，特别是对没有索引的字段进行当前读（比如增、删、改或者 select … for update）时，会阻塞除

快照读以外所有的并发 SQL。

而后面我们又聊了以唯一索引做为条件的当前读不会用到 GAP 锁，因为根据唯一索引查询最多就一条记录，而且

相同索引记录的值，一定不会再新增。

6 问题

 加餐：答疑篇（一） 18 为什么会出现死锁？

我们使用下面的 SQL 创建一张测试表 t17_1 并写入数据。

然后进行下面实验：

session1 session2 session3

set session
transaction_isolation=‘REPEATABLE-
READ’;/* 设置会话隔离级别为 RR*/

set session
transaction_isolation=‘REPEATABLE-
READ’;/* 设置会话隔离级别为 RR*/

set session
transaction_isolation=‘REPEATABLE-
READ’;/* 设置会话隔离级别为 RR*/

begin;

use muke;
select * from t17_1 where c=5 for update;
…
1 row in set (0.00 sec)

insert into t17_1 values (2,2,2,2);/* sql1 */ insert into t17_1 values (6,6,6,6);/* sql2 */

commit;

在 session1 提交之前，sql1 和 sql2 是否能写入成功？原因是什么？欢迎在留言区参与讨论。

7 参考资料

何登成的 github。

}

use muke;

drop table if exists t17_1;

CREATE TABLE `t17_1` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `a` int(11) NOT NULL,
 `b` int(11) NOT NULL,
 `c` int(11) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `uniq_a` (`a`) USING BTREE,
 KEY `idx_c` (`c`)
) ENGINE=InnoDB CHARSET=utf8mb4;

insert into t17_1(id,a,b,c) values (1,1,1,1),(3,4,2,5),(5,3,4,3),(7,7,7,7);

select * from t17_1;

https://github.com/hedengcheng/tech/tree/master/database/MySQL

	1 揭晓上一节课后问题的答案
	2 RR 隔离级别下的非唯一索引查询
	3 RR 隔离级别下的非索引字段查询
	4 RR 隔离级别下的唯一索引当前读是否会用到 GAP 锁
	5 总结
	6 问题
	7 参考资料

