
更新时间：2019-10-01 20:54:22

23 细聊分布式事务

比如你在网上买了一本书，可以简化为在订单库增加订单，在库存库减掉这本书的 1 个库存。这里订单库和库存库

是在不同的机器上，如果这两步放在两个事务里，增加订单这一步成功了，但是减库存这里失败了。那岂不是就乱

了。

这里就要引出分布式事务了。什么是分布式事务？

1 认识分布式事务

分布式事务是指一个大的事务由很多小操作组成，小操作分布在不同的服务器上或者不同的应用程序上。分布式事

务需要保证这些小操作要么全部成功，要么全部失败。MySQL 从 5.0.3 开始支持分布式事务。

分布式事务使用两阶段提交协议：

第一阶段：所有分支事务都开始准备，告诉事务管理器自己已经准备好了；

第二阶段：确定是 rollback 还是 commit，如果有一个节点不能提交，则所有节点都要回滚。

与本地事务不同点在于：分布式事务需要多一次 prepare 操作，等收到所有节点的确定信息后，再进行 commit 或

者 rollback。

上面买书的例子，就可以放到一个分布式事务里，保证增加订单和减库存操作有原子性，要么全部成功，要么全部

失败。

耐心是一切聪明才智的基础。

——柏拉图

file:///read/43/article/702
file:///read/43/article/704


MySQL 中分布式事务按实现方式可以分为两种：MySQL 自带的分布式事务和结合中间件实现分布式事务。下面来

详细介绍一下这两种分布式事务。

2 MySQL 自带的分布式事务

MySQL 有自带的分布式事务实现方法，具体语法如下：

启动分支事务：

‘a’,‘a_1’ 表示 xid，

a 表示 gtrid，为分布式事务标识符，相同的分布式事务使用相同的 gtrid。

a_1 表示 bqual，为分支限定符，分布式事务中的每一个分支事务的 bqual 必须不同。

结束分支事务：

进入准备状态：

提交分支事务：

回滚分支事务：

返回当前数据库中处于 prepare 状态的分支事务的详细信息：

我们来看一个具体例子：

session1 session2

use muke1; use muke2;

create table t23_1(id int); create table t23_2(id int);

xa start ‘test’,‘muke1’; xa start ‘test’,‘muke2’;

insert into t23_1 select 1; insert into t23_2 select 1;

xa end ‘test’,‘muke1’; xa end ‘test’,‘muke2’;

xa prepare ‘test’,‘muke1’; xa prepare ‘test’,‘muke2’;

xa recover \G xa recover \G

xa commit ‘test’,‘muke1’; xa commit ‘test’,‘muke2’;

xa start 'a','a_1';

xa end 'a','a_1';

xa prepare 'a','a_1';

xa commit 'a','a_1';

xa rollback 'a','a_1';

xa recover;



上面的例子就演示了一个分布式事务，事务在 muke1 库中的 t23_1 表中插入一条记录，同时在 muke2 库中的

t23_2 表中插入一条记录，两个操作作为同一个事务提交。在进入准备状态之前，如果 session2 中某一步没执行成

功而回滚了，则 session1 和 session2 整个分布式事务的操作都会回滚。

但是 MySQL 5.7 之前的版本，自带的分布式事务存在以下问题：

比如某个分支事务到达 prepare 状态时，此时数据库断电，重启后，可以继续对分支事务进行提交或者回滚，但是

提交的事务不会写 binlog，如果有从库，会导致主从数据不一致的情况。

如果分支事务的客户端连接异常中止，那么数据库会自动回滚当前分支未完成的事务，如果此时分支事务已经到

prepare 状态，那么这个分布式事务的其他分支可能已经成功提交，如果这个分支回滚，可能导致分布式事务的不

完整，丢失部分分支事务的内容。

还有一种情况，如果分支事务在执行到 prepare 状态时，数据库出现故障，并且无法启动，需要使用全备和 binlog

来恢复数据，那么这些在 prepare 状态的分支事务因为没有记录到 binlog，所以也不能通过binlog 进行恢复，在数

据库恢复后，将丢失这部分数据。

所以，MySQL 5.7 之前的版本自带的分布式事务还存在比较严重的缺陷，在有些场景下，会导致数据丢失。如果

业务对数据完整性要求不改，可以考虑使用，如果对数据完整性要求比较高，需要考虑先升级到 5.7 版本。

3 结合中间件实现分布式

上面说了 MySQL 自带的分布式事务，这里再介绍一下借助中间件实现分布式的情况。

具体实现方式可以拿上面网上购书的例子来说：

订单业务程序处理完增加订单的操作后，将减库存操作发送到消息队列中间件中（比如：Rocketmq），订单业务

程序完成提交。然后库存业务程序检查到消息队列有减对应商品库存的信息，就开始执行减库存操作。库存业务执

行完减库存操作，再发送一条消息给消息队列中间件：内容是已经减掉库存。具体步骤如下：

当然，为了确定最终已经完成减库存操作，还可以加一步对数据库中该商品库存的判断。



 22 养成好的事务习惯 24 如何预防SQL注入?

4 总结

本节讲解了分布式事务，所谓分布式事务，是指一个大的事务由很多小操作组成，小操作分布在不同的服务器上或

者不同的应用程序上。分布式事务需要保证这些小操作要么全部成功，要么全部失败。

本节讲解了两种分布式方式：

MySQL 自带的分布式事务

结合中间件实现分布式

当然，目前主流的分布式实现还是结合中间件实现分布式处理的，本节也举例说明了使用 MQ 实现分布式的例子。

5 问题

各位朋友是通过什么方式实现分布式的呢？

6 参考资料

《高性能 MySQL》第 3 版 7.11 分布式（XA）事务

《深入浅出 MySQL》第 2 版 14.3 分布式事务的使用

《MySQL 技术内幕：InnoDB存储引擎》第 2 版 7.7 分布式事务

}


	1 认识分布式事务
	2 MySQL 自带的分布式事务
	3 结合中间件实现分布式
	4 总结
	5 问题
	6 参考资料

