
更新时间：2019-10-15 11:20:24

27 使用读写分离需要注意哪些？

对于高访问量的业务场景，MySQL 读写分离显得格外重要。

通常我们说的 MySQL 读写分离是指：对于修改操作在主库上执行，而对于查询操作，在从库上执行。主要目的是

分担主库的压力。

但是读写分离有时也会存在问题，比如：主从延迟时，读取的从库数据不是最新的，对应的业务场景比如：

你网购的一个商品，付完款之后，因为主从延迟，第一时间还查询不到订单（查询的从库），即使等一段时间能看

到订单，但是相信这种情况很多用户是不能接受的。

本节就一起来讨论一下：读写分离需要注意哪些问题。

通常情况下，读写分离都是依赖主从复制，因此，我们先来看看主从复制的原理，也能方便我们理解为什么会出现

主从延迟的现象。

1 主从复制的原理

1.1 MySQL 异步复制

传统的 MySQL 主从复制是异步的，因此也称为异步复制，MySQL 异步复制的原理如下：

在主库开启 binlog 的情况下

如果主库有增删改的语句，会记录到 binlog 中

一个不注意小事情的人，永远不会成功大事业。

——戴尔·卡耐基

file:///read/43/article/706
file:///read/43/article/708


主库通过 IO 线程把 binlog 里面的内容传给从库的中继日志（relay log）中

主库给客户端返回 commit 成功（这里不会管从库是否已经收到了事务的 binlog）

从库的 SQL 线程负责读取它的 relay log 里的信息并应用到从库数据库中

实现原理如下图：

在上图中，有一个地方不能忽视：

在主库上并行运行的更新 SQL，由于从库只有单个 SQL 线程去消化 relay log，因此更新的 SQL 在从库只能

串行执行。这也是很多情况下，会出现主从延迟的原因。

当然，从 5.6 开始，MySQL 支持了每个库可以配置单独的 SQL 线程来消化 relay log，在 5.7 又增加了基于组提交

的并行复制，大大改善了主从延迟的问题。

1.2 MySQL 半同步复制

在 MySQL 异步复制的基础上，又出现了一种改进的复制方式，称为：半同步复制。其原理如下：

在主库开启 binlog 的情况下

如果主库有增删改的语句，会记录到 binlog 中

主库通过 IO 线程把 binlog 里面的内容传给从库的中继日志（relay log）中

从库收到 binlog 后，发送给主库一个 ACK，表示收到了

主库收到这个 ACK 以后，才能给客户端返回 commit 成功

从库的 SQL 线程负责读取它的 relay log 里的信息并应用到从库数据库中



实现原理如下图：

跟传统的异步复制相比，半同步复制保证了所有给客户端发送过确认提交的事务，从库都已经收到这个日志了。

2 常见的读写分离方式

2.1、通过程序

开发通过配置程序来决定修改操作走主库，查询操作走从库。这种方式直连数据库，优点是性能会好点，缺点是配

置麻烦。

但是需要注意的是：从库需要设置为 read_only，防止配置错误在从库写入了数据。

这里提醒一点：

程序连接的用户建议不要给 super 权限，因为 super 权限的用户，即使整个库设置了 read_only ，也能写入数

据。

2.2、通过中间件

通过中间件实现读写分离，目前算是一种主流的方式。拿 MyCAT 举例：

在 schema.xml 文件中，dataHost 标签 balance 属性的值，决定了是否启用读写分离。

balance 各个值及对应的读写方法如下：

0：不开启读写分离，读操作发送到 writehost

1：全部的 readhost 与 stand by writehost 参与 select 语句的负载均衡

2：所有读操作都随机在 writehost、readhost上分发

3：所有读请求随机分发到 writerhost 对应的 readhost 执行，writehost 不负担读压力

因此可以根据实际情况选择上面合适的读写分离策略。

3 什么情况下会出现主从延迟



在本节的开始，我们说到，对于读写分离场景，最大的问题就是：主从延迟。那么在哪些情况下会出现主从延迟

呢？这里大致总结一下可能导致主从延迟的场景：

大表 DDL

大事务

主库 DML 并发大

从库配置差

表上无主键

等等

因此，如果存在读写分离的情况，应尽量避免上诉情况在业务高峰出现。

当然，我们不能完全杜绝主从延迟。因此再介绍几种读写分离场景下应对延迟的方法。

4 读写分离怎样应对主从延迟

读写分离场景应该怎样应对主从延迟呢？这里来讨论一下几种常见的应对主从延迟的方法：

4.1 判断主从是否延迟

有些业务场景，如果所有请求都落在主库，主库压力会很大，但是在读写分离的情况，又不希望主从存在延迟的时

候去读取从库。这种情况，就可以考虑查询时，先判断主从是否存在延迟，如果存在延迟，则查询落在主库，如果

没延迟，则查询语句落在从库。

这里介绍几种判断主从延迟的方法：

第一种方法：判断 Seconds_Behind_Master 是否等于 0。

如果 Seconds_Behind_Master =0，则查询从库，如果大于 0，则查询主库。

这里补充一下 Seconds_Behind_Master。

Seconds_Behind_Master 是在从库上执行 show slave status 时返回的其中一项，表示从库延迟的秒数。

其计算方法是：

从库服务器当前的时间戳与二进制日志中的事件的时间戳（在主库上的写入时间）相对比得到的。

但是某些情况下，Seconds_Behind_Master 并不一定准确。比如网络中断时，Seconds_Behind_Master = 0 ，并不

能代表主从无延迟。因此，有比这个更准确的一种方法：对比位点或 GTID。

第二种方法：对比位点或 GTID

如果 Master_Log_File 跟 Relay_Master_Log_File 相等，

并且 Read_Master_Log_Pos 跟 Exec_Master_Log_Pos 相等，

则可以把读请求放到从库，否则读请求放到主库。



补充一下上面几个参数的意义：

几个参数均是通过 show slave status 返回的参数，用来查询主从复制的状态。

Master_Log_File：IO 线程正在读取的主库 binlog 文件名

Relay_Master_Log_File：SQL 线程最近执行的事务对应的主库 binlog 文件名

Read_Master_Log_Pos ：IO 线程正在读取的主库 binlog 文件中的位点

Exec_Master_Log_Pos ：SQL 线程最近读取和执行的事务对应的主库 binlog 文件中的位点

如果开启了 GTID 复制，则可以对比 Retrieved_Gtid_Set 和 Executed_Gtid_Set 是否相等，相等则把读请求放到

从库，有差异则读请求放到主库。

同样补充下两个参数的意义：

前提是需要开启 GTID 两个参数才会有值，解释如下：

Retrieved_Gtid_Set：从库收到的所有日志的 GTID 集合

Executed_Gtid_Set：从库已经执行完的 GTID 集合

4.2 采用半同步复制

在本节的前面，我们讲解了半同步复制的原理，跟传统的异步复制相比，半同步复制保证了所有给客户端发送过确

认提交的事务，从库都已经收到这个日志了。因此出现延迟的概率会小很多，当然实际生产应用时，建议结合上面

讲的位点或 GTID 判断。

4.3 等待同步完成

依然采用 4.1 中介绍的几种判断是否有延迟的方法，只是应对方式不一样，比如存在延迟，则将情况反馈给程序，

在前端页面提醒用户数据未完全同步，如果没有延迟，则查询从库。

有人可能会觉得：这种方式谁会用啊？实际可以应用在内部人员看的报表业务上。因为报表可能涉及的 SQL 都比

较复杂，存在延迟就考虑去查询主库，可能会对其它线上业务有影响，因此可以等待从库同步完成，再查询从库。

5 总结

本节讲了读写分离，由于能分担主库的压力，很多情况会考虑读写分离。但是在使用时，就应该考虑到一些问题，

其中最主要的就是主从延迟。

这个就看业务是否能接受延迟了。

如果不能接受延迟，建议采用半同步复制并且加上延迟判断。存在延迟则把读请求放到主库，没延迟就读从库。

如果业务能接受延迟，可以等数据同步完成，再去从库进行查询。




26 MySQL是否需要开启查询缓
存? 28 哪些情况需要考虑分库分表？

6 问题

你们是用什么方式实现读写分离的？会不会对主从延迟进行判断？又是怎么判断的呢？

欢迎在留言区讨论。

7 参考资料

《MyCAT 权威指南》第 1 版：6.6.4 balance 属性

《MySQL 5.7 官方手册》 14.7.5.34 SHOW SLAVE STATUS Syntax

}


	1 主从复制的原理
	1.1 MySQL 异步复制
	1.2 MySQL 半同步复制

	2 常见的读写分离方式
	2.1、通过程序
	2.2、通过中间件

	3 什么情况下会出现主从延迟
	4 读写分离怎样应对主从延迟
	4.1 判断主从是否延迟
	4.2 采用半同步复制
	4.3 等待同步完成

	5 总结
	6 问题
	7 参考资料

