
更新时间：2020-03-09 11:04:57

02 常用数据类型与使用建议

在日常使用 MySQL 的过程中，一定会根据数据类型的限制、特性有所取舍。MySQL 中可选的数据类型有很多，

每一种数据类型都会有其使用限制与适合的使用场景，想把它们都理清楚、说明白并不是一件简单的事。但是，这

些知识点又会极大的影响我们日常的工作使用。所以，有必要对常用的数据类型做思考总结。

1 关于数据类型的说明

数据类型定义了 MySQL 列中可以存储什么数据以及当前数据存储的基本规则。从 MySQL 系统的角度出发，则是

为了方便对数据分类，能够使用统一的方式进行管理，更有效的利用有限空间的一种手段。下面，我会介绍

MySQL 数据类型的分类以及 MySQL 自身提供的对数据类型的帮助说明。

1.1 数据类型分类

通常，我们会将 MySQL 的数据类型分为四类，即字符串、日期 / 时间、数值以及二进制。显然，根据这些分类的

名称可以知道，分类是按照存储数据的类型来做的。那么，这些分类中又包含了哪些数据类型呢 ？

字符串类型：以 char、varchar、text 为代表，用于存储字符、字符串数据

日期 / 时间类型：以 date、time、datetime、timestamp 为代表，用于存储日期或时间，这种数据类型也是比

较难抉择的

数值类型：以 tinyint、int、bigint、float、double、decimal 为代表，用于存储整数或小数

二进制类型：以 tityblob、blob、mediumblob、longblob 为代表，用于存储二进制数据，适用场景最为受限

虚心使人进步，骄傲使人落后。——毛泽东

file:///read/71/article/1635
file:///read/71/article/1637

最后，需要说明，对数据类型的分类并不是绝对的，这取决于对存储数据的限制程度。例如对于数值类型又可以再

去细分为整数型（int、bigint 等）、浮点型（float、double 等）、定点型（decimal 等）。所以，并不需要把过多

的精力花在类型分类上，更多的是应该搞清楚这些类型怎么用，又为什么这样用。

1.2 MySQL 的 help 命令

对于平时写代码的你来说，Linux/Unix 环境一定不会陌生，当然，也就对 man 和 help 这样的命令不会陌生了。类

似于这样的 “帮助命令” 在 MySQL 中也是有的。例如，你想知道 int 这种数据类型的使用范围，可以执行命令：

可以看到，help 打印了 int 数据类型的描述信息以及官方文档的链接地址。这对于学习使用数据类型来说，是非常

方便的。当然，我们也可以在 help 后面加上 char、varchar 等等 MySQL 支持的数据类型。

此时，你可能会有疑问：这些打印的信息是从哪里来的 ？难道也是保存在 MySQL 表中的吗 ？确实，正如猜测的

那样，MySQL 提供了 4 张表用于保存帮助信息（help 语法打印的即为帮助信息）。这些表位于 mysql 系统字典库

中，且表名都以 help_ 开头。如下所示：

这些表是在数据库初始化时通过内建脚本创建而成，其中：

help_category：存储关于帮助主题类别的信息

help_keyword：存储与帮助主题相关的关键字信息

help_relation：存储帮助关键字信息和主题信息之间的映射

help_topic：存储帮助主题的详细内容

由此，可以知道，我们之前的 help int 信息来自于 mysql.help_topic 表中，也就可以通过查询表记录信息来获取帮

助信息了。如下所示：

mysql> help int
Name: 'INT'
Description:
INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647.
The unsigned range is 0 to 4294967295.

URL: https://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html

mysql> show tables from mysql where Tables_in_mysql like 'help_%';
+-----------------+
| Tables_in_mysql |
+-----------------+
| help_category |
| help_keyword |
| help_relation |
| help_topic |
+-----------------+

关于其他的 “帮助表” 这里不再过多介绍，有兴趣的同学可以自行查询 MySQL 官网或其他渠道了解信息。

2 常用数据类型解读及使用建议

如果你在工作中细心观察，你会发现，其实常用的数据类型并不会很多。下面，我将会按照之前的分类对日常工作

中最常用的数据类型进行解读，同时也会说明它们各自的适用场景与使用时的建议。

2.1 字符串类型

2.1.1 char

char 数据类型用于定义一个固定长度的字符串，长度范围处于 1 ~ 255 之间，且必须是在创建表时指定。它有一个

特殊的情况是，存储字符串时，如果未达到指定长度，则会使用空格填充到指定长度。所以，如果我们想要存储不

同记录的字符串长度差别较大，会造成较大的空间浪费。

根据对 char 类型的描述可以知道，当我们需要存储一些长度固定的数据列时，使用 char 是非常合适的。例如：手

机号码、身份证号等等。

2.1.2 varchar

相对于 char 来说，varchar 的 “出场率” 要稍微高一些。它定义了一个可变长度的字符串，创建时指定它所允许的

最大长度。例如，如果创建时声明了 varchar (x)，则只能存储不超过 x 个字符的数据，且 x 的最大值是 65535。

对于长度不固定的数据列，使用 varchar 就是最合适的。例如：姓名、邮箱地址等等。

char 和 varchar 是非常相似且常见的字符串类型，想要把它们用对、用好，不仅要能够理解它们各自的含义、特

性，还要知道它们在使用上的区别：

定义了 char (x)，如果存入的字符个数小于 x，则以空格填充，查询时再将空格去掉（类似于 trim 操作）。所

以，char 类型存储的字符串末尾不能有空格，而 varchar 则没有这一限制

char (x) 长度是固定的，不论存入什么，都会占用 x 个字节。但是 varchar 占用的字节数是存入的字符数 +

1（x <= 255）或 + 2（x > 255）

char 由于长度固定，不需要考虑边界问题，检索速度要快于 varchar

2.1.3 tinytext、text、mediumtext、longtext

这是 MySQL 提供的四类文本数据类型，它们都属于变长字符串，最大的区别是存储空间的不同，其中：

-- \G 指示 MySQL 以列格式打印结果信息
mysql> SELECT * FROM mysql.help_topic WHERE name = 'int'\G
*************************** 1. row ***************************
 help_topic_id: 13
 name: INT
help_category_id: 2
 description: INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647.
The unsigned range is 0 to 4294967295.

URL: https://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html

 example:
 url: https://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html

tinytext：最大长度是（2^8 - 1）个字符

text：最大长度是（2^16 - 1）个字符

mediumtext：最大长度是（2^24 - 1）个字符

longtext：最大长度是（2^32 - 1）个字符

最简单的对文件数据类型的理解是：当我们要存储的数据量比较大，就应该考虑使用文本。这里，我建议当你的数

据量超过 500 个字符时，就应该考虑使用文本。另外，文本类型不能有默认值，且在创建索引时需要指定前多少个

字符。

2.2 日期 / 时间类型

2.2.1 date

正如这种数据类型的名称一样，它用于存储日期，存储范围是 ‘1000-01-01’ 到 ‘9999-12-31’。这种数据类型比较简

单，但同时适用场景也比较有限，因为它只能存储 “年月日”。比较常见的用途是存储出生日期。

2.2.2 time

它用于存储时间，不仅可以表示一天中的时间，也可以用于表示两个时间的时间间隔。它的取值范围是 ‘-

838:59:59’ to ‘838:59:59’。乍看起来，它的小时取值太特殊了，正常不应该是 [0, 23] 吗 ？这是因为 time 可以表示

特殊的时间间隔，MySQL 将 time 的小时范围扩大了，而且支持负值。

除了基本的存储一天中的时间之外，time 允许以 “D HH:MM:SS” 的格式存储。其中，D 的取值是 0 ~ 34。如果要

存储时间间隔，time 则会以（时间间隔 * 小时）作为小时进行存储。它的计算公式是：D * 24 + HH。例如，插入

了 “2 19:20:00”，相当于插入 “67:20:00”。

2.2.3 datetime

日期与时间的组合格式，取值范围是 ‘1000-01-01

00:00:00.000000’ 到 ‘9999-12-31 23:59:59.999999’。它是最常见，用途最广的数据类型。例如：存储数据插入时

间、订单完成时间等等。

2.2.4 timestamp

同样用于存储日期时间数据，与 datetime 存储的数据格式是一样的，它的取值范围是：‘1970-01-01

00:00:01.000000’ UTC 到 ‘2038-01-19 03:14:07.999999’ UTC。它与 datetime 的主要区别在于时间范围要小一

些。

另外，timestamp 是与时区相关的，能够反映 “当前时间”。当插入时间时，会先转换为本地时区后再存储；查询时

间时，会转换为本地时区后再显示。所以，不同时区的人看到的同一时间是不一样的。

在 MySQL 表中存储时间（可以是日期、时间或日期时间）是非常常见的需求，但是如何合理的选择数据类型却也

是个难题。这里我给出一个建议：通常 datetime 是最佳选择。理由如下：

时间范围跨度足够大，能够满足所有的时间需求

即使是只用于存储日期或时间，也可以存储日期时间，只需要在代码中处理即可。避免将来需求变更时对数据

表的 Schema 有所变动。

2.3 数值类型

2.3.1 整数类型

MySQL 主要支持 5 个整数类型：tinyint、smallint、mediumint、int、bigint。这些数据类型我们基本上认为它们有共

同的特性，不同之处只在于存储空间，即存储数值的取值范围。同时，在定义时可以使用 UNSIGNED 关键字规定

字段只保存正值。下面，我将这几种整数类型的特性用表格展示出来。

数据类型 占据空间 范围（有符号） 范围（无符号） 描述

tinyint 1 个字节 -2^7 - 2^7 - 1 0 - 255 小整数值

smallint 2 个字节 -2^15 - 2^15 - 1 0 - 65535 大整数值

mediumint 3 个字节 -2^23 - 2^23 - 1 0 - 16777215 大整数值

int 4 个字节 -2^31 - 2^31 - 1 0 - 4294967295 大整数值

bigint 8 个字节 -2^63 - 2^63-1 0 - 18446744073709551615 极大整数值

由于这几种数据类型除了取值范围不同之外，并没有其他的不同，所以，在使用上，根据需要选择 “足够大” 的空间

就可以了。另外，关于整数类型还有一个特性：显示宽度。例如，我们在定义 Schema 时，常常会看到类似这样的

写法：

其中，20 和 11 就是可选的显示宽度，这会让 MySQL 对 SQL 标准进行扩展，当从数据库检索一个值时，可以把

这个值延长到指定的宽度。例如，这里的 b 定义的类型为 int (11)，就可以保证 b 这一列少于 11 个字符宽度时自

动使用空格填充。但同时，需要注意，定义宽度并不会影响字段的大小和存储值的取值范围。

2.3.2 浮点类型

MySQL 支持两个浮点类型：float、double。其中，float 用于表示单精度浮点数值，占用 4 个字节；double 用于表

示双精度浮点数值，占用 8 个字节。因为它们只能保存近似值（不精确的值），所以，通常也叫做非标准类型。

float 相较于 double 类型来说，由于占据的空间小，精度较低，取值范围也相对较小。它们的定义格式及说明如

下：

float (M, D)：其中 M 定义显示长度，D 定义小数位数。但是它们是可选的，且默认值是 float (10, 2)，2 是小

数的位数，10 是数字的总长（包括小数）。它的小数精度可以到 24 个浮点。

double (M, D)：M 和 D 的含义与 float 是相同的，默认值是 double (16, 4)。它的小数精度可以达到 53 位。

2.3.3 定点类型

MySQL 中的 decimal 被称为定点数据类型，由于它保存的是精确值，所以它通常用于精度要求非常高的计算中。

另外，也可以利用 decimal 去保存比 bigint 还要大的整数值。

需要知道，CPU 并不支持对 decimal 的直接计算，而是 MySQL 自身实现了对 decimal 的高精度计算。底层存储方

面，MySQL 将 decimal 类型的数字使用二进制字符串存储，每 4 个字节可以存储 9 个数字。假如我们定义了

decimal (18, 9)：

则代表不包含小数点的数字总数（整数位数 + 小数位数）位数是 18，不指定的情况下默认是 10

9 则代表小数的位数，如果不指定，默认是 0

由于小数点两边各有 9 个数字，所以占据 2 * 4 = 8 个字节，小数点自身占用一个字节，最终，decimal (18, 9) 一

共占用 9 个字节。需要注意，如果存储的位数不够，则小数末尾会补零。但是，如果超出了声明的位数，则会报

错。

`a` bigint(20) NOT NULL COMMENT 'a',
`b` int(11) NOT NULL COMMENT 'b'

由于 decimal 需要比较大的空间和计算开销，它的计算效率也就没有 float 和 double 那么高，所以应该只有要求精

确计算的场景下才考虑去使用 decimal。

2.4 二进制类型

二进制数据类型理论上可以存储任何数据，可以是文本数据，也可以存储图像或者其他多媒体数据。二进制数据类

型相对于其他的数据类型来说，使用频率是比较低的。MySQL 一共提供了四种二进制类型：tityblob、blob、

mediumblob、longblob，它们的区别只在于存储范围的不同。

tityblob：最大支持 255 字节

blob：最大支持 64KB

mediumblob：最大支持 16MB

longblob：最大支持 4GB

需要注意，虽然 MySQL 提供并支持大文件存储，但是这样会急剧降低数据库的性能。所以，应该谨慎使用这些数

据类型，能不用的情况下尽量不用。

3 数据类型选择与使用上的技巧与建议

在我们日常使用 MySQL 的过程中，或多或少都会积累一些经验。下面，我将总结我在工作中对数据类型选择的一

些技巧与建议。但是，需要知道，这些建议并不一定适用于所有的情况。在做实际的选择时，我们不仅要考虑这些

技巧，也要对应到具体的需求。

3.1 使用 NOT NULL，且带有 COMMENT

这个建议适用于所有的数据类型，MySQL 在索引值为 NULL 的列时，需要额外的存储空间，所以，相对于 NOT

NULL 来说，NULL 会占用更多的空间。另外，在进行比较和计算时，MySQL 要对 NULL 值做特别的处理，使用效

率较低。

COMMENT 用于定义列的注释信息，就好像我们在写代码一样，把重要的或者不易理解的地方，加上一些注释，

方便以后查阅。

3.2 使用存储需要的最小数据类型

这里所说的最小数据类型并不是直接选择最小的，而是在满足需求的同时选择最小的。例如，要存储事件状态，可

以选择 tinyint；要存储班级人数，可以选择 smallint 等等。关于最小数据类型，它有两大优势：

越小的数据类型占用的磁盘、内存、CPU 缓存都会更小，存取速度也会更快

小的数据类型建立索引时所需要的空间也相对较小，这样一页中所能存储的索引节点数量也就越多，遍历时

IO 次数就会越少，索引的性能也就越好

3.3 选择简单的数据类型

这里的 “简单” 二字听上去会比较奇怪，我以一个例子去说明。假如说我想在一列中存储 10、100、201 这样的数

据，我们可以选择使用 int 或 varchar 来存储。但是整型要比字符型的操作复杂度小太多，那么，选择整型（例如

int）就是最简单的数据类型。

3.4 存储小数直接选择 decimal


01 开篇词-你为什么要学习
MySQL？ 

03 Schema 设计规范是什么样的
？

虽然我并不建议在数据库中存储小数，但是，在一些场景中小数不可避免，最常见的例子就是订单的金额。由于小

数本身在计算时就很复杂，而且很多时候你需要去考虑精度问题。所以，最直接的方式就是把这种管理交给数据

库。

这里我提出一个扩展建议，也就是不要在数据库中存储小数。那么，假如订单的精度到分（元、角、分）级别，我

们可以考虑在存储时，把数据值 * 100 再去存储。之后，在代码中处理分的逻辑，也就是自己去控制处理小数的精

度问题。

3.5 尽量避免使用 text 和 blob

MySQL 内存临时表并不支持 text、blob 这样的大数据类型，如果查询时包含有这样的数据，则排序操作必须使用

磁盘临时表，性能会下降很多。而且对于这种数据，MySQL 还要做二次查询（因为 MySQL 实际保存的是指针，

而不是真实数据），会使 SQL 性能变得很差。

但是，也并不是说我们一定就不能用 text 和 blob。如果确实有需求需要使用这样的数据类型，那么在查询时一定

不要直接 SELECT *，而是取出需要的列。这样 MySQL 就不会去主动查询这些数据列，也是提高性能的一种惯用

手段。

最后，还需要注意，因为 MySQL 对索引长度的限制，text 类型只能用到前缀索引，并且由于存储的是指针，text

列上不能有默认值。

4 总结

数据类型是 MySQL 的基础，看起来也比较简单，但常常也就是觉得简单才会忽略它们的特性与限制。可以肯定的

说，想要选择正确的、合理的数据类型并不是一件简单的事。不过，也并不需要追求完美的选型。能够解决实际的

问题，或多或少存在一些瑕疵，当然也是可以接受的。先去学习并理解，再去大胆的使用，遇到瓶颈了再回过头仔

细分析问题，并解决掉，这就是很好的学习方法。

5 问题

将时间转换为时间戳，并使用 int 或者 bigint 类型去存储，你觉得这样可行吗 ？

大多数时候，我们会选择将主键设置为 bigint 数据类型，你知道这是为什么吗 ？

6 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档

}

https://dev.mysql.com/doc/refman/5.7/en/data-types.html

	1 关于数据类型的说明
	1.1 数据类型分类
	1.2 MySQL 的 help 命令

	2 常用数据类型解读及使用建议
	2.1 字符串类型
	2.1.1 char
	2.1.2 varchar
	2.1.3 tinytext、text、mediumtext、longtext

	2.2 日期 / 时间类型
	2.2.1 date
	2.2.2 time
	2.2.3 datetime
	2.2.4 timestamp

	2.3 数值类型
	2.3.1 整数类型
	2.3.2 浮点类型
	2.3.3 定点类型

	2.4 二进制类型

	3 数据类型选择与使用上的技巧与建议
	3.1 使用 NOT NULL，且带有 COMMENT
	3.2 使用存储需要的最小数据类型
	3.3 选择简单的数据类型
	3.4 存储小数直接选择 decimal
	3.5 尽量避免使用 text 和 blob

	4 总结
	5 问题
	6 参考资料

