
更新时间：2020-03-30 10:13:22

13 学会对MySQL做基准测试，掌握数据库性能

不论你是做哪个方向，使用哪种框架或工具，对于你的最终作品，都一定离不开基准测试。简单的说，基准测试就

是要看看产品的性能是否符合预期，或达到某种预定义的指标。MySQL 作为明星级存储工具，应用范围之广不必

多说。为了预见 MySQL 的可用性，我们就需要对 MySQL 做基准测试。这一节里，我会先去讲解基准测试的理

论，再去介绍 sysbench（基准测试工具），最后，演示说明针对 MySQL 的基准测试。

1 关于基准测试，你需要知道这些

通常，我们去认识一种新的技术，都会带着三个问题去学习并思考：它是什么 ？它能够做什么 ？又应该怎样使用

它呢 ？接下来，我会从理论层面去解答前两个问题。

1.1 什么是基准测试

基准测试可以理解为对系统的一种压力测试（也就是常说的压测），但是它又与压测有着显著的区别。压测通常都

是需要考虑业务逻辑的，毕竟它是业务上线之前的最后一道工序，需要使用真实的数据（或近似数据）。而基准测

试则宽泛很多，它不要求去关注业务实现，数据可以由工具生成，所以，更加简单、直接。

而对于数据库的基准测试，它其实是有定义的：

学习要注意到细处，不是粗枝大叶的，这样可以逐步学习、摸索，找到客观规律。 —— 徐特立

file:///read/71/article/1699
file:///read/71/article/1706

数据库的基准测试是对数据库的性能指标进行定量的、可复现的、可对比的测试。

1.2 基准测试的作用

如果你经常接触业务系统，你就一定知道，系统的性能瓶颈基本都在 IO 上。IO 又会分为两类：磁盘 IO 和网络

IO。对于网络 IO 来说，不确定性太大了，单独的一方很难去做优化。所以，大多数的性能优化都是针对磁盘 IO

的，而这里的磁盘 IO 指的就是数据库的读写操作。

对数据库的基准测试，就是要分析在当前的环境配置（硬盘配置、操作系统配置、数据库配置等等）下数据库的性

能表现。并通过不断的调校配置和测试过程，来找到 MySQL 的最佳性能阈值，提供高可用的环境。

1.3 基准测试的指标

从出现基准测试，再到逐步发展，关于测试的指标是 “与日俱增” 的。但实际上，常用的数据库指标就那么几个（这

样的情况可以引申的案例简直不胜枚举），一起来看一看吧。

TPS：Transactions Per Second 的首字母缩写，每秒处理完成的事务次数

QPS：Query Per Second 的首字母缩写，每秒查询次数，与 TPS 一样，都是用来衡量系统吞吐量

响应时间：包含平均、最大、最小响应时间

并发量：可以同时处理的请求数量

在对 MySQL 做基准测试时，一定要去选择专业的工具，不要重复造轮子。sysbench 通用且功能强大，最让人欣

喜的是：它非常适合 InnoDB，因为它模拟了许多 InnoDB 的特性。接下来，我们就去学习下 sysbench。

2 基准测试工具 sysbench

sysbench 确实是一款非常不错的数据库性能测试工具，起码用过的人都说好。下面，我不仅要告诉你 sysbench 能

做什么，还要带着你把它安装到你的机器中。最后，讲解它的语法和使用说明。

2.1 初识 sysbench

sysbench 是跨平台的基准测试工具，支持多线程和多种数据库（Mysql、PostgreSQL、Oracle 等等）。它的测试

能力非常广，主要包括：

CPU 运算性能

磁盘 IO 性能

内存分配及传输速度

POSIX 线程性能

数据库性能（OLTP 基准测试）

这里需要注意，在谈到测试数据库性能的时候，说的是针对 OLTP（另一类是 OLAP）的基准测试。这里大家不需

要担心，因为大多数数据服务都是 OLTP 类型的（可以动手查一查什么是 OLTP，什么又是 OLAP）。

2.2 安装 sysbench

关于 sysbench 的安装方法，在官网中已经给出了详细的说明（如果你的英文比较好，也可以去读一读官网的说

明）。sysbench 能够很好的支持 Linux 和 macOS，对于 Windows 来说可能就差强人意了。下面，我将给出在

Linux 和 macOS 上的安装方法说明：

如果你的机器是 mac，那就会非常的方便了（不仅仅是 sysbench，对于其他工具的安装也非常方便），只需要通

过 brew 就可以完成安装。安装完成之后，可以验证下是否安装成功：

2.3 sysbench 语法

只需要在终端下执行 sysbench --help 命令，就可以看到关于 sysbench 的详细使用方法。首先，看一看它的基本

语法：

所以，你也就知道了，学会使用 sysbench，只需要搞明白：options、testname、lua_options 和 command。

options 是选项或参数的意思，它涵盖的内容非常多，例如：数据库相关的、日志相关的、行为相关的等等。下

面，我先去介绍一些常用的 options：

通用数据库选项

–db-driver：指定数据库的类型，默认是 mysql

MySQL 相关选项

–mysql-host：服务器主机地址，默认是 localhost

–mysql-port：服务器端口，默认是 3306

–mysql-user：用户名，默认是 sbtest

–mysql-password：密码

–mysql-db：指定测试数据库，默认是 sbtest（需要自行创建）

执行（通用）选项

–threads：创建测试线程的数量，默认是1

–events：事件数量

Debian/Ubuntu
curl -s https://packagecloud.io/install/repositories/akopytov/sysbench/script.deb.sh | sudo bash
sudo apt -y install sysbench

RHEL/CentOS
curl -s https://packagecloud.io/install/repositories/akopytov/sysbench/script.rpm.sh | sudo bash
sudo yum -y install sysbench

Fedora
curl -s https://packagecloud.io/install/repositories/akopytov/sysbench/script.rpm.sh | sudo bash
sudo dnf -y install sysbench

macOS
brew install sysbench

直接在终端下执行即可（由于存在版本更新的可能，你的版本号可能与我的不同）
� ~ sysbench --version
sysbench 1.0.18

sysbench [options]... [testname] [command]

https://github.com/akopytov/sysbench

–time：最大执行时间，单位是秒

–report-interval：生成报告的时间间隔，0代表禁止，默认是0

–debug：是否打印更多的调试信息，默认是 off

–config-file：配置文件

testname 标识要进行的测试，在老版本的 sysbench 中，可以通过 --test 选项指定测试脚本，而在新版本中，–test

已经被废弃了，而是直接可以指定测试脚本。例如：

sysbench 测试使用的是 lua 脚本，绝大多数情况下，使用 sysbench 自带的就已经足够了。对于不同版本的

sysbench，脚本的位置也可能会不同。下面，我给出一种简单的方法来寻找这些自带的脚本：

command 是 sysbench 要执行的命令，一共有四类：

prepare：准备数据的命令。在 sysbench 压力测试之前，需要先准备好测试库、测试表以及测试表中的数据

run：进行压力测试

cleanup：清除测试时产生的数据

help：输出给定 lua 脚本的帮助信息

2.4 sysbench 使用说明

至此，已经介绍了 sysbench 的安装和使用方法，那么，接下来就一定是使用 sysbench 做基准测试了。别着急，

先来看看关于 sysbench 的使用说明：

� ~ sysbench /usr/local/Cellar/sysbench/1.0.18_1/share/sysbench/oltp_read_only.lua

先确定你已经成功安装了 sysbench
� ~ sysbench --version
sysbench 1.0.18

使用 which 命令找到可执行文件的位置
� ~ which sysbench
/usr/local/bin/sysbench

可以发现 /usr/local/bin/sysbench 是个软链接，同时也指出了 sysbench 的安装目录
� ~ ls -l /usr/local/bin/sysbench
lrwxr-xr-x 1 qinyi 40 12 3 20:19 /usr/local/bin/sysbench -> ../Cellar/sysbench/1.0.18_1/bin/sysbench

进入到 sysbench 的安装目录中
� ~ cd /usr/local/Cellar/sysbench/1.0.18_1/

自带的 lua 脚本位于安装目录下的 share/sysbench 目录中
� 1.0.18_1 ls -lt share/sysbench
total 60
drwxr-xr-x 5 qinyi 160 12 3 20:19 tests
-rwxr-xr-x 1 qinyi 1452 10 21 14:23 bulk_insert.lua
-rw-r--r-- 1 qinyi 14369 10 21 14:23 oltp_common.lua
-rwxr-xr-x 1 qinyi 1290 10 21 14:23 oltp_delete.lua
-rwxr-xr-x 1 qinyi 2415 10 21 14:23 oltp_insert.lua
-rwxr-xr-x 1 qinyi 1265 10 21 14:23 oltp_point_select.lua
-rwxr-xr-x 1 qinyi 1649 10 21 14:23 oltp_read_only.lua
-rwxr-xr-x 1 qinyi 1824 10 21 14:23 oltp_read_write.lua
-rwxr-xr-x 1 qinyi 1118 10 21 14:23 oltp_update_index.lua
-rwxr-xr-x 1 qinyi 1127 10 21 14:23 oltp_update_non_index.lua
-rwxr-xr-x 1 qinyi 1440 10 21 14:23 oltp_write_only.lua
-rwxr-xr-x 1 qinyi 1919 10 21 14:23 select_random_points.lua
-rwxr-xr-x 1 qinyi 2118 10 21 14:23 select_random_ranges.lua

不要在线上 MySQL 服务器执行测试，这会严重影响服务性能

逐步增加并发连接数（–threads 选项，例如：10、20、50、100），观察 MySQL 的表现

每一轮完整的测试都应该包含 cleanup

3 使用 sysbench 对 MySQL 进行测试

sysbench 的测试过程其实就是对应于它的 command（prepare、run、cleanup），那么，我接下来就按照这个步骤

完整的走一遍对 MySQL 的基准测试。最后，再去解读测试报告以及给出测试建议。

3.1 测试前的准备工作

由于 sysbench 使用 sbtest 库（默认使用的库名）做测试，我们就需要先来创建一个测试库（当然也可以自行指定

其他的库，但必须是要存在的）：

创建测试库之后，就可以使用 sysbench 去完成准备工作了。我们在 sbtest 库中创建5张测试表，每张表中插入

5000条数据，执行如下命令：

由于之前已经讲解过这些选项、参数的含义，我这里就不再赘述了（命令输出也比较简单、易读）。准备工作完成

之后，你可以去数据库中查看下 sysbench 都 fake 了哪些数据。

3.2 执行测试

如果你仔细观察 sysbench 自带的 lua 脚本名称，你就会发现，它们包含了很多类型的测试，例如：只读测试、只

写测试、删除测试、大批量插入测试等等。我们这里挑选 oltp_read_write.lua（任意挑选，不具有特殊含义）来执

行测试：

通过 mysqladmin 工具创建 sbtest 测试库（通过 MySQL 客户端 CREATE DATABASE 也是一样的）
� ~ mysqladmin -h127.0.0.1 -uroot -proot -P3306 create sbtest
mysqladmin: [Warning] Using a password on the command line interface can be insecure.

--tables=5表示创建5个测试表，--table_size=5000表示每个表中插入5000行数据
� ~ sysbench --mysql-host=127.0.0.1 \
 --mysql-port=3306 \
 --mysql-user=root \
 --mysql-password=root \
 /usr/local/Cellar/sysbench/1.0.18_1/share/sysbench/oltp_common.lua \
 --tables=5 \
 --table_size=5000 \
 prepare
sysbench 1.0.18 (using bundled LuaJIT 2.1.0-beta2)

Creating table 'sbtest1'...
Inserting 5000 records into 'sbtest1'
Creating a secondary index on 'sbtest1'...
Creating table 'sbtest2'...
Inserting 5000 records into 'sbtest2'
Creating a secondary index on 'sbtest2'...
Creating table 'sbtest3'...
Inserting 5000 records into 'sbtest3'
Creating a secondary index on 'sbtest3'...
Creating table 'sbtest4'...
Inserting 5000 records into 'sbtest4'
Creating a secondary index on 'sbtest4'...
Creating table 'sbtest5'...
Inserting 5000 records into 'sbtest5'
Creating a secondary index on 'sbtest5'...

执行上面这个命令，我们的终端会 hang 住60秒，并把打印输出重定向到 /tmp/sysbench.log 文件中。这里我暂时

不去解读这份测试输出，不过，你可以先打开去看一看。

3.3 测试后的清理工作

在介绍 sysbench 的时候我就说过，每一轮完整的测试过程都应该包含清理工作。所以，当执行完上面的命令之

后，紧接着执行下 cleanup 吧：

可以看到，cleanup 过程是非常简单的，它直接把创建的5张测试表 DROP 掉了。不过，需要注意，cleanup 并没有

删除测试库 sbtest。我们可以据此得出结论，sysbench 不会参与到测试库的创建和删除过程。

3.4 测试结果的分析

在执行 run 命令时，我将结果输出重定向到了 /tmp/sysbench.log 文件中，这里，我们来一起解读下，看看基准测

试的结果（已经做了相关注释）。

测试 60s，并把测试输出到 /tmp/sysbench.log 文件中
� ~ sysbench --threads=4 \
 --time=60 \
 --report-interval=10 \
 --mysql-host=127.0.0.1 \
 --mysql-port=3306 \
 --mysql-user=root \
 --mysql-password=root \
 /usr/local/Cellar/sysbench/1.0.18_1/share/sysbench/oltp_read_write.lua \
 --tables=5 \
 --table_size=5000 \
 run >> /tmp/sysbench.log

� ~ sysbench --mysql-host=127.0.0.1 \
 --mysql-port=3306 \
 --mysql-user=root \
 --mysql-password=root \
 /usr/local/Cellar/sysbench/1.0.18_1/share/sysbench/oltp_common.lua \
 --tables=5 \
 cleanup
sysbench 1.0.18 (using bundled LuaJIT 2.1.0-beta2)

Dropping table 'sbtest1'...
Dropping table 'sbtest2'...
Dropping table 'sbtest3'...
Dropping table 'sbtest4'...
Dropping table 'sbtest5'...

3.5 关于使用 sysbench 的一些建议

到目前为止，你应该知道了什么是 sysbench，以及怎样利用 sysbench 对数据库做基准测试。最后，我来阐述几点

建议：

如果想要使用真实数据做基准测试，可以自行创建测试表和插入数据，不走 sysbench 的 prepare

基准测试要执行多次才有意思，且建议每次测试时长不低于1个小时

基准测试一定要模拟多线程的情况，单线程不但无法模拟真实的环境，也无法模拟阻塞以及死锁的情况

4 总结

sysbench 1.0.18 (using bundled LuaJIT 2.1.0-beta2)

执行测试的一些基本设置：并发线程数为4、每10秒报告一次测试结果
Running the test with following options:
Number of threads: 4
Report intermediate results every 10 second(s)
Initializing random number generator from current time

初始化（测试）工作线程
Initializing worker threads...

Threads started!

每10s报告一次测试结果
thds（线程数）、tps（每秒事务数）、qps（每秒查询数）、r/w/o（每秒的读/写/其它次数）、lat（延迟）、err/s（每秒错误数）、reconn/s（每秒
重连次数）

[10s] thds: 4 tps: 93.38 qps: 1875.13 (r/w/o: 1312.87/375.10/187.15) lat (ms,95%): 58.92 err/s: 0.00 reconn/s: 0.00
[20s] thds: 4 tps: 104.49 qps: 2089.73 (r/w/o: 1462.81/417.95/208.97) lat (ms,95%): 51.02 err/s: 0.00 reconn/s: 0.00
[30s] thds: 4 tps: 107.62 qps: 2152.04 (r/w/o: 1506.64/430.17/215.23) lat (ms,95%): 49.21 err/s: 0.00 reconn/s: 0.00
[40s] thds: 4 tps: 109.86 qps: 2197.47 (r/w/o: 1538.02/439.73/219.72) lat (ms,95%): 51.02 err/s: 0.00 reconn/s: 0.00
[50s] thds: 4 tps: 112.04 qps: 2240.84 (r/w/o: 1568.59/448.17/224.08) lat (ms,95%): 44.17 err/s: 0.00 reconn/s: 0.00
[60s] thds: 4 tps: 111.80 qps: 2235.59 (r/w/o: 1565.19/446.80/223.60) lat (ms,95%): 45.79 err/s: 0.00 reconn/s: 0.00

SQL statistics: # SQL 统计信息
 queries performed:
 read: 89544 # 执行的读操作数量
 write: 25584 # 执行的写操作数量
 other: 12792 # 执行的其它操作数量
 total: 127920 # 全部总数
 transactions: 6396 (106.53 per sec.) # 总事务数（执行事务的平均速率）
 queries: 127920 (2130.62 per sec.) # 查询数（平均每秒能执行多少次查询）
 ignored errors: 0 (0.00 per sec.) # 忽略错误数
 reconnects: 0 (0.00 per sec.) # 重新连接次数

General statistics: # 通用统计信息
 total time: 60.0372s # 测试总耗时
 total number of events: 6396 # 总请求数量(读、写、其它)

Latency (ms): # 延迟信息
 min: 15.72 # 最小延迟
 avg: 37.53 # 平均延迟
 max: 324.36 # 最大延迟
 95th percentile: 51.94 # 前 95% 的延迟
 sum: 240039.46 # 总延迟

Threads fairness: # 线程稳定性
 events (avg/stddev): 1599.0000/4.74 # 事件数(平均值/标准差)
 execution time (avg/stddev): 60.0099/0.01 # 执行时间(平均值/标准差)


12 死锁是怎么出现的？又是怎么
解决的呢？ 

14 你应该知道的系统数据库及常
用系统表

理解和执行基准测试并没有很高的难度，但是如何判断数据库性能的高低就是一门学问了。这需要你去根据基准测

试结果不断的调整数据库参数（有时候甚至需要调整操作系统的参数），毋庸置疑，这是一件麻烦且非常消耗精力

的事。所以，一定不要集中化，有空的时候做做基准测试，收集并比对之前的结果，逐步调优。

5 问题

你之前做过哪方面的基准测试 ？是用什么工具做的 ？

你能说说 sysbench 工具自带的 lua 脚本是用来做哪些类型的测试吗 ？

使用 sysbench 自带的脚本对 MySQL 做基准测试，并分析测试结果 ？

6 参考资料

《高性能 MySQL（第三版）》

sysbench github

MySQL 官方文档：Measuring Performance (Benchmarking)

MySQL 官方文档：High Availability and Scalability

}

https://github.com/akopytov/sysbench
https://dev.mysql.com/doc/refman/5.6/en/optimize-benchmarking.html
https://dev.mysql.com/doc/refman/5.6/en/ha-overview.html

	1 关于基准测试，你需要知道这些
	1.1 什么是基准测试
	1.2 基准测试的作用
	1.3 基准测试的指标

	2 基准测试工具 sysbench
	2.1 初识 sysbench
	2.2 安装 sysbench
	2.3 sysbench 语法
	2.4 sysbench 使用说明

	3 使用 sysbench 对 MySQL 进行测试
	3.1 测试前的准备工作
	3.2 执行测试
	3.3 测试后的清理工作
	3.4 测试结果的分析
	3.5 关于使用 sysbench 的一些建议

	4 总结
	5 问题
	6 参考资料

