
更新时间：2020-04-03 14:33:06

15 认识日志系统，掌握系统运行过程

不论你参与的是大项目还是小项目，一定会在项目的早期把日志系统添加进去，这是非常重要且必要的，因为你将

来排查问题、优化系统、对账报表等等都依赖于你的日志。虽说日志是工程不可或缺的组成部分，但是，想要做的

很好（易于理解、维护、分析等等）并不容易。这一节里，我们一起来学习 MySQL 的日志系统，看看它能对你产

生怎样的启发。

1 日志系统初探

在具体的看 MySQL 日志系统之前，我们先来简单的了解下 MySQL 提供了哪些日志（这里，你可以去思考下为什

么 MySQL 要提供这种日志），以及对日志系统做的整体优化。

1.1 日志类型

关于分类，从不同的角度看，可以有不同的分类。例如，从存储类型的角度来看，可以分为两类：逻辑日志（存储

SQL 修改语句）和物理日志（存储数据被修改的值）。但是，更加常见的是按照功能分成以下四类：

错误日志：记录 MySQL 服务实例启动、运行、停止等等的过程信息

查询日志：也叫做普通（general）查询日志，记录 MySQL 实例运行的所有 SQL 语句和命令

慢查询日志：记录执行时间较长（有参数可以指定）的 SQL 语句，或者没有使用索引的 SQL 语句

二进制日志：记录 MySQL 实例执行的所有更新语句，不包含 SELECT 和 SHOW 语句

那么，在接下来的内容中，我就会按照功能分类依次讲解这四类日志（可以想一想，为什么 MySQL 要把日志分成

很多类）。

知识犹如人体的血液一样宝贵。——高士其

file:///read/71/article/1706
file:///read/71/article/1751

1.2 日志缓存

说到缓存（Cache）这个词，大家一定都不会陌生，为了提升系统的 IO、计算性能，我们通常会把将来可能会使用

到的数据放到缓存系统中，例如：Redis、MemCache 等等。MySQL 的日志处理过程也同样使用了缓存机制。

MySQL 系统在运行过程中产生的日志起初会放在服务器的内存（日志数据结构）中，当内存中的日志超过了指定

的阈值，便会将日志刷写到数据表（本质还是文件）或文件中。这种优化缓冲的做法非常常见，例如 HBase 的

HLog（HBase 的日志组件）也是同样的做法记录日志。

2 错误日志

之前已经谈到日志就是文件，那么，这些文件存储在哪里呢 ？实际上，这些文件存放在数据库的根目录下，且各种

类型的日志都存放在这个目录下。不过，可能你安装完 MySQL 之后就忘了安装在哪里了（特别是 Mac 用户，通

过 brew 安装）。好吧，那我们就带着这个问题去看一看错误日志。

相比于其他类型的日志，MySQL 的错误日志比较特殊，你不能将它关闭。它主要记录服务实例每次启动、停止的

详细信息，以及运行过程中产生的警告和错误信息。MySQL 中与错误日志有关的参数是：log_error，我们一起来

看一看它：

其中，第二列 Value 打印的就是错误日志文件的完整路径。好的，这下你应该知道日志存储在哪里了。默认情况

下，错误日志文件名会以 “主机名.err” 结尾。但是，需要知道，错误日志不会记录所有的错误信息，只有被

MySQL 声明为 “关键错误” 的事件发生时才会记录。

3 查询日志

同样，查询日志也是比较特殊的，相对于其他几类日志来说，查询日志是不建议打开的。这类日志通常用于项目的

开发阶段，记录系统的完整行为，及时发现问题并解决问题。这也是一类比较简单的日志，一起来看看吧。

3.1 初识查询日志

查询日志记录了 MySQL 服务实例所有的操作，而不管这些操作是否执行成功。例如：日常的 CRUD、客户端与服

务器连接和断开等等。你可以认为，对于查询日志来说，MySQL 发生了什么，就会记录什么。

正是由于查询日志的记录过程不会挑肥拣瘦，这也成了它最大的缺点。当数据库访问的特别频繁时，将会有大量的

日志产生，由此将会大幅降低数据库的性能。所以，通常来说，查询日志都是关闭的。只有在调试或者特殊时期，

需要追踪某些特殊的查询，可以临时打开查询日志。

3.2 与查询日志相关的参数

与查询日志相关的参数一共有三个，它们分别用于标识状态、日志路径以及输出类型。下面，我们依次来看一看这

三个参数：

mysql> SHOW VARIABLES LIKE 'log_error';
+---------------+--+
| Variable_name | Value |
+---------------+--+
| log_error | /usr/local/mysql/data/mysqld.local.err |
+---------------+--+

开启查询日志有两种方式，一种是修改配置文件，但是需要重启服务；另一种是在运行时通过 SET 命令，但是只

能对当前的会话生效。修改过程如下所示：

打开查询日志的开关之后，MySQL 服务实例将会自动创建查询日志文件，general_log_file 参数则用于指定文件的

位置（同样可以自行修改），我们可以看一看：

最后一个参数是 log_output，它用于设置查询日志和慢查询日志（是的，这个参数控制了两类日志的行为）的输出

类型。默认情况下，这个参数的值是 “FILE”，代表将日志写入文件。我们可以把它修改成 “TABLE”，这样，查询日

志就会被写入 mysql 系统库的 general 表中（对于慢查询日志来说，会写入 slow_log 表中）。演示下这个过程

吧：

将查询日志写到数据表中可以方便的通过 SQL 去查询 MySQL 的工作过程（还可以加上一些过滤条件），但是这

会严重降低服务器的性能，只能将它应用于调试，线上服务要绝对禁止。

4 慢查询日志

-- 第一个参数 general_log，标识查询日志是否处于开启状态，默认是 OFF，即关闭
mysql> SHOW VARIABLES LIKE 'general_log';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| general_log | OFF |
+---------------+-------+

-- 修改配置文件：/etc/my.cnf
general_log_file = /usr/local/mysql/data/general_log_mysql.log
general_log = 1

-- 通过 SET 命令，使当前的会话生效
SET GLOBAL general_log = 'ON';

-- 第二个参数 general_log_file
mysql> SHOW VARIABLES LIKE 'general_log_file';
+------------------+---+
| Variable_name | Value |
+------------------+---+
| general_log_file | /usr/local/mysql/data/B000000104678.log |
+------------------+---+

-- 设置查询日志输出到表中
mysql> SET GLOBAL log_output = 'TABLE';

-- 一条任意的 SQL 查询
mysql> SELECT * FROM imooc_mysql.worker WHERE id = 1;
+----+------+------+--------+---------+
| id | type | name | salary | version |
+----+------+------+--------+---------+
| 1 | A | tom | 1800 | 0 |
+----+------+------+--------+---------+

-- 可以看到，mysql.general_log 表中记录了刚刚的查询语句
mysql> SELECT user_host, command_type, argument FROM mysql.general_log ORDER BY event_time DESC LIMIT 3;
+------------------------------------+--------------+--+
| user_host | command_type | argument |
+------------------------------------+--------------+--+
root[root] @ localhost [127.0.0.1]	Query	SHOW COLUMNS FROM `general_log`
root[root] @ localhost [127.0.0.1]	Query	USE `mysql`
root[root] @ localhost []	Query	SELECT * FROM imooc_mysql.worker WHERE id = 1
+------------------------------------+--------------+--+

这类日志有个很形象的名字，也说明了日志记录的规则：慢查询。这是一类非常重要的日志，不仅在工作中发挥着

巨大的作用，而且也是面试的常客。关于慢查询日志，你需要知道：它的概念是什么 ？怎样定义 “慢” ？又该怎样

分析这类日志 ？好的，带着这几个问题一起来学习下吧。

4.1 初识慢查询日志

慢查询日志的关键词是 “慢查询”，也就是说当你的 SQL 查询足够慢时，MySQL 就会记录这条 SQL。虽然说不能

一概而论多久才是慢，但是，一般情况下，我们会定义 “商业应用” 的阈值是 1s，而 “用户应用” 的阈值则是

200ms。

MySQL 的慢查询日志可以有效的对执行时间过长、没有使用索引的查询进行跟踪。这些查询也就是我们通常使用

的 CRUD 操作。但是，需要特别注意，慢查询日志只会记录执行成功的语句，这与查询日志不同。

4.2 与慢查询日志相关的参数

与慢查询日志有关的参数一共有5个，我们先来看一看与状态有关的两个（我会带着操作过程去解释）：

慢查询日志一旦开启，MySQL 实例将会自动创建慢查询日志文件。与查询日志类似，开启慢查询日志同样有两种

方法，如下所示：

其实，在打开慢查询日志开关之前，我们应该先设置慢查询的时间阈值。这个阈值默认是 10s，这显然不能接受。

可以像下面这样去修改、查询这个阈值：

-- slow_query_log：标记慢查询日志是否开启的参数，默认是 OFF，即不开启
mysql> SHOW VARIABLES LIKE 'slow_query_log';
+----------------+-------+
| Variable_name | Value |
+----------------+-------+
| slow_query_log | OFF |
+----------------+-------+

-- slow_query_log_file：标记存放慢查询日志文件的完整路径
mysql> SHOW VARIABLES LIKE 'slow_query_log_file';
+---------------------+--+
| Variable_name | Value |
+---------------------+--+
| slow_query_log_file | /usr/local/mysql/data/B000000104678-slow.log |
+---------------------+--+

-- 修改配置文件：/etc/my.cnf
slow-query-log = 1
slow_query_log_file = /usr/local/mysql/data/slow_log_mysql.log

-- 通过 SET 命令，使当前的会话生效
SET GLOBAL slow_query_log = 'ON';

-- long_query_time：控制慢查询的时间阈值参数
mysql> SHOW VARIABLES LIKE 'long_query_time';
+-----------------+-----------+
| Variable_name | Value |
+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+

-- 设置慢查询时间阈值为 1s，注意，需要重新打开会话才能看到修改后的值
mysql> SET GLOBAL long_query_time = 1.0;

慢查询日志还有一个非常强大的功能，它可以捕获没有使用索引的查询语句，不论这条查询速度有多快（这一点非

常重要）。同样，MySQL 也用了一个参数来控制这一行为：

最后一个与慢查询日志相关的参数是 log_output，这在讲解 “查询日志” 时已经做了说明，这里不再赘述（可以尝试

修改这个参数，让慢查询日志记录到 mysql.slow_log 表中，并分析其中的各个列值）。

4.3 慢查询日志分析工具

MySQL 的慢查询日志是可读的，即可以直接阅读（使用文本编辑器即可打开，另外，如果想要构造慢查询，最简

单的办法是： SELECT SLEEP(3)），但是，当慢查询日志文件太大，就很难找到自己想要的内容。为此，MySQL

提供了 mysqldumpslow 工具（默认安装），它的详细用法可以通过 mysqldumpslow --help 命令查看。下面，我来

讲解几个常用的参数：

-s：标识按照哪种方式排序

al：平均锁等待时间

at：平均查询时间

ar：平均返回数据行数

c：查询执行次数

l：锁等待时间

r：返回数据行数

t：查询时间

-t N：标识返回前 N 条数据

-g：grep，包含模糊匹配

最后，给出一些常用的查询方法，类似的情况，可以照猫画虎去完成（需要指定慢查询日志的正确路径，另外，可

能需要 root 权限）。

5 二进制日志

-- log_queries_not_using_indexes：标识是否记录未使用索引的查询，默认是关闭
mysql> SHOW VARIABLES LIKE 'log_queries_not_using_indexes';
+-------------------------------+-------+
| Variable_name | Value |
+-------------------------------+-------+
| log_queries_not_using_indexes | OFF |
+-------------------------------+-------+
1 row in set (0.00 sec)

-- 通过 SET 命令，打开这一开关
mysql> SET GLOBAL log_queries_not_using_indexes = 'ON';
Query OK, 0 rows affected (0.00 sec)

查询访问次数最多的 10条 SQL 语句
mysqldumpslow -s c -t 10 /usr/local/mysql/data/B000000104678-slow.log

查询返回记录数最多的 10条 SQL 语句
mysqldumpslow -s r -t 10 /usr/local/mysql/data/B000000104678-slow.log

查询含有 like 的 SQL 语句
mysqldumpslow -g 'like' /usr/local/mysql/data/B000000104678-slow.log

二进制日志其实就是我们通常所说的 Binlog，它属于 MySQL 的逻辑日志，且使用二进制的格式保存在磁盘文件

中，所以，也就不能直接查看。Binlog 的重要性不仅体现在工作中，也常常作为面试题出现，且会有一定的难度。

所以，认真的学习、理解 Binlog 至关重要。

5.1 初识二进制日志

Binlog 用于记录数据库的所有变化，在 MySQL 中它的作用是主从同步。关于 Binlog 记录的信息，简单的说，所有

涉及数据变动的操作，都会记录下来。Binlog 日志的记录格式一共有三种：ROW、STATMENT 以及 MIXED，下

面，我来对它们进行说明：

ROW

说明：基于行的复制，不会记录每一条 SQL 语句的上下文信息，仅仅会保存哪条记录被修改

优点：记录了每一行数据的修改细节

缺点：日志量巨大，特别是批量修改的情况

STATMENT

说明：基于 SQL 语句的复制，记录每一条修改数据的 SQL，是 Binlog 的默认格式

优点：日志量小，节约磁盘 IO

缺点：在某些情况下会导致 Master-Slave 不一致，例如：执行 Sleep 函数

其中，MIXED 格式是 ROW 和 STATMENT 两种格式的混合，普通的复制使用的是 STATMENT 格式，对于

STATMENT 无法复制的操作则会使用 ROW 格式去记录。使用 MIXED 格式时，会由 MySQL 来决定使用哪种格式

记录日志。

5.2 二进制日志的相关操作

其实在之前讲解 “数据备份与恢复” 时，就已经提到过 Binlog，但是，我并没有详细的对 Binlog 的相关操作做出说

明，这里，我们就来看一看 Binlog 的相关操作。

对于 8.0 之前的版本来说，Binlog 是默认关闭的。标识 Binlog 开关的参数是 log_bin，且它是一个只读变量，也就

是说我们不能通过 SET 命令的方式完成修改。我们一起来看看：

所以，想要开启 Binlog，我们就必须要去修改 MySQL 的配置文件（my.cnf），然后重启 MySQL。配置文件中添

加如下变量定义：

-- log_bin 的默认值是 OFF，标识关闭 Binlog
mysql> SHOW VARIABLES LIKE 'log_bin';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| log_bin | OFF |
+---------------+-------+

-- log_bin 是一个只读变量，不能通过 SET 命令修改
mysql> SET GLOBAL log_bin = 'ON';
ERROR 1238 (HY000): Variable 'log_bin' is a read only variable

[mysqld]
log-bin = mysql-bin # 开启 Binlog
binlog-format = ROW # 定义为 ROW 格式（可以随意选择）
server_id = 1 # MySQL 实例 id

注意，修改完成之后，一定要重启你的 MySQL 服务器，而不是重新打开一个 MySQL 客户端会话。好吧，配置修

改之后，自行去验证下是否打开了 Binlog 日志（查看下 log_bin 参数的值即可）。

想要查看当前系统的所有 Binlog 日志，可以查看 log_bin_index 参数，如下所示：

之后，可以使用 cat 命令查看下这个文件（可能需要 root/管理员 权限）：

这个文件中记录了 Binlog 的相对路径（相对于 mysql-bin.index 文件），所以，实际上 Binlog 日志也位于

/usr/local/mysql/data 中。另外，关于 Binlog 还有几个常用的操作命令需要掌握：

5.3 二进制日志的清理

随着系统在不断运行，日志量也会逐步增加，所以，自然也就会有清理日志的工作。MySQL 提供了两种方式来清

理 Binlog，一种是手动的，一种是自动的。

手动清理 Binlog 是通过 PURGE 命令，它会同时删除 Binlog 文件和 Binlog 索引文件记录。语法以及示例如下：

-- log_bin_index ​参数标识的是 Binlog 索引文件的位置
mysql> SHOW VARIABLES LIKE 'log_bin_index';
+---------------+---------------------------------------+
| Variable_name | Value |
+---------------+---------------------------------------+
| log_bin_index | /usr/local/mysql/data/mysql-bin.index |
+---------------+---------------------------------------+

� ~ sudo cat /usr/local/mysql/data/mysql-bin.index
Password:
./mysql-bin.000001
./mysql-bin.000002
./mysql-bin.000003
./mysql-bin.000004
./mysql-bin.000005
./mysql-bin.000006
./mysql-bin.000007

-- 查看所有的 Binlog 日志列表
SHOW MASTER LOGS

-- 查看 Master 的状态，即最后一个 Binlog 日志的编号名称，及操作事件的 POS（位置）值
SHOW MASTER STATUS

-- 刷新 Binlog，产生一个新编号的 Binlog 文件
FLUSH LOGS

-- 清空所有的 Binlog 日志（慎用）
RESET MASTER

-- PURGE 命令语法
PURGE { BINARY | MASTER } LOGS { TO 'log_name' | BEFORE datetime_expr }

-- PURGE 命令示例
-- 删除 mysql-bin.000003 之前的 Binlog 文件，也就是 mysql-bin.000001 和 mysql-bin.000002
mysql> PURGE BINARY LOGS TO 'mysql-bin.000003';

-- 删除 2019-12-08 零点之前的 Binlog 文件
mysql> PURGE MASTER LOGS BEFORE '2019-12-08 00:00:00';


14 你应该知道的系统数据库及常
用系统表 

16 视图应该怎样去应用和管理
呢？

自动清理 Binlog 是通过配置 MySQL 的 expire_logs_days 参数（在 my.cnf 中配置）。例如，设置

expire_logs_days = 10，表示系统保留10天的 Binlog，第11天将会删除第1天的 Binlog。但是，这种方式会出现瞬

间过高的 IO，从而导致业务出现性能抖动。

6 总结

MySQL 日志系统按照日志的功能做了 “细致的” 分类，这其实也对我们日常设计日志系统提供了参考。虽然看起来

日志种类繁多，但是让每一类日志只负责 “一部分” 功能，也降低了整体的学习难度。学习日志系统，一定要亲力亲

为，尝试打开、关闭各类日志，并分析日志内容。最终，能够熟练的掌握利用日志排查问题、优化系统等等技能。

7 问题

为什么 MySQL 要把日志分成很多类，这样做的优缺点是什么 ？

错误日志只会记录 “关键错误”，你能举例说明哪些是关键错误吗 ？

你能总结 MySQL 各个种类的日志所负责的功能吗 ？

根据你的理解，谈一谈线上应用应该开启哪几类日志 ？为什么 ？

Binlog 的内容是二进制的，你平时用到过吗 ？是怎么解析的呢 ？

8 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：MySQL Server Logs

MySQL 官方文档：Server System Variable Reference

MySQL 官方文档：mysqlbinlog — Utility for Processing Binary Log Files

MySQL 官方文档：Binary Logging Options and Variables

}

https://dev.mysql.com/doc/refman/5.7/en/server-logs.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variable-reference.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html

	1 日志系统初探
	1.1 日志类型
	1.2 日志缓存

	2 错误日志
	3 查询日志
	3.1 初识查询日志
	3.2 与查询日志相关的参数

	4 慢查询日志
	4.1 初识慢查询日志
	4.2 与慢查询日志相关的参数
	4.3 慢查询日志分析工具

	5 二进制日志
	5.1 初识二进制日志
	5.2 二进制日志的相关操作
	5.3 二进制日志的清理

	6 总结
	7 问题
	8 参考资料

