
更新时间：2020-04-13 09:23:48

18 外键是一个非常特殊的存在

关于外键应用的印象，可能大多还停留在书本中，因为你只要一提到外键，就会有人告诉你：企业级开发中禁用外

键，别问为什么，我们都是这样做的。之后，这种思想逐渐沉淀下来，对于外键，也越来越 “疏远”。但是，外键真

的那么不好吗 ？如果不好，为什么 MySQL 在版本更新中不把这项复杂的功能去掉呢 ？那么，这一节里，我们将

会详细的探讨这些问题，揭开外键神秘的外纱。

1. 聊一聊外键

一项技术或者功能的出现，一定会有它的原因、它的需求。这里，我们将要去讨论下 MySQL 为什么会创造外键，

它有怎样的作用。之后，再去从理论层面讲解外键的概念，让你掌握外键的思想。最后，谈一谈外键的优缺点，你

也就能够发现，在哪些情况下确实不适合使用外键。

1.1 外键的前世今生

谈到外键的前世今生，我们先去考虑一个业务场景：学生一定会属于某一个班级，那么，在创建学生表（存储学生

的信息）时，是不是要把班级信息一块放进去呢 ？你一定知道，学生和班级信息放在一张表中肯定是不合适的，这

会造成大量的数据冗余，难以维护。正确的解决方案是创建学生表和班级表，并让这两张表之间建立某种联系。而

实现这种联系的技术方案就是外键，这也就是外键诞生的需求。

衡量一个人的真正品格，是看他在知道没人看见的时候干些什么。——孟德斯鸠

file:///read/71/article/1754
file:///read/71/article/1791

虽然外键功能非常强大，MySQL 也对它做了很多优化，但是，外键的使用频率并不高。甚至在很多企业中，都是

直接禁用外键。所以，你也知道了，外键的今生过的不好。

1.2 外键的概念

简单的说，外键就是表中存在一个字段指向另一个表的主键，那么，这个字段就被称之为外键。外键有很多属性，

它们也都非常重要，总结如下：

两个关联的表中，主键所在的表被称为母表，外键所在的表被称为子表

外键可以为空值（NULL），如果不为空，则外键值必须等于另一个表的主键值

一张表可以有多个外键

如果子表中有相应的外键值，母表不可以随意删除或更新这个字段

外键对应的是参照完整性，用于约束表与表之间的关系。可以说，外键是表之间的映射关系，这个关系可以帮助我

们处理表之间的紧密性和存在性。所以，你需要知道，外键的核心思想是约束。

1.3 外键的优缺点

外键存在的目的就是让 MySQL 去管理表与表之间的关系，否则，就需要我们用代码去管理。但是，有利就一定会

有弊，下面，我们一起来看看外键的优势与劣势。

外键的优势

由数据库来保证数据的一致性、完整性，使程序的逻辑更加简单

对于存在外键关系的表，可以使用客户端生成可读性更好的 ER 图

外键的劣势

外键会额外的占据存储空间

外键会使数据库对数据的管理更加复杂，在操作时会降低性能

母表数据出错或者丢失，正确的数据迁移和数据恢复几乎成为不可能的事

所以，根据这里提到的外键存在的优势与劣势，可以得出结论：外键保证了数据的完整性，但是会降低性能且对故

障恢复难度太大。最后，关于应不应该使用外键，我给出几点建议：

对于性能要求不高，但是安全性要求高的系统，使用外键；反之，不使用

对于表数据量特别大的系统，例如上千万行，不使用

对于偏小的业务系统，也没有很大的流量，建议使用外键

2. 外键的操作

通过以上对外键的解读、分析，你应该理解了外键，知道了外键的好与不好。接下来，我们去看一看在 MySQL 中

应该怎样操作外键（这并不简单，你需要好好的思考和理解）。

2.1 增加外键

应用、修改或删除外键之前，一定得先有外键。但是，在讲解怎么给表增加外键之前，我们得先要知道外键自身的

一些约束条件：

母表必须已经建好在数据库中

外键关联的一定是母表的主键

外键列的个数必须和母表主键列个数相同（考虑到一张表的主键是多个列的组合）

外键列的数据类型必须和母表主键列的数据类型一致

给数据表增加外键有两种情况，一种是在创建表时指定，另一种是给已经存在的表添加。在创建表时指定外键使用

FOREIGN KEY 关键字，语法如下：

其中：“外键名” 是定义的外键的名称，与索引名是类似的，同时，MySQL 不允许一个表中存在相同的外键名；“字

段名” 标识子表添加外键约束的数据列；“母表名” 即与子表存在外键关联的表；“主键列” 标识母表中的主键列。

另外，在建立外键时，可以指定 ON UPDATE <action> 和 ON DELETE <action> 子句来标识发生 UPDATE 和

DELETE 操作时，子表和母表的数据应该如何处理。MySQL 支持四种约束条件：

RESTRICT：MySQL 的默认约束条件，禁用母表中的更新和删除操作

NO ACTION：与 RESTRICT 含义相同

CASCADE：更新或删除母表记录时，自动更新或删除子表中对应的记录，即级联

SET NULL：更新或删除母表记录时，将子表中对应记录外键设置为 NULL，前提是子表外键列是允许 NULL 值

的

好的，既然已经知道了增加外键的语法和约束条件。我们就以学生表和班级表的例子来构造表之间的外键约束，建

表 SQL 语句如下：

执行以上建表语句，就在 student 表中添加了名称为 “s_class_id” 的外键约束，外键列的名称是 c_id，依赖于表

class 的主键（注意使用默认的约束条件）。那么，假如在创建 student 表时没有指定外键约束，又该怎么增加外

键呢 ？也就是第二种情况了。我们也来看一看它的语法：

两种增加外键的语法几乎是一样的，所以，我这里不做重复说明，直接给出一个在建表之后增加外键的示例 SQL

语句：

[CONSTRAINT <外键名>] FOREIGN KEY 字段名 [，字段名2，…]
REFERENCES <母表名> 主键列1 [，主键列2，…]

-- 班级表作为母表，所以，需要先创建出来
CREATE TABLE class(
 id int(11) AUTO_INCREMENT COMMENT '主键 id',
 info varchar(256) NOT NULL COMMENT '班级信息',
 PRIMARY KEY(`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- 学生表建表语句
CREATE TABLE student(
 id int(11) AUTO_INCREMENT COMMENT '主键 id',
 name varchar(64) NOT NULL COMMENT '姓名',
 c_id int(11) NOT NULL COMMENT '班级 id',
 PRIMARY KEY(`id`),
 CONSTRAINT `s_class_id` FOREIGN KEY(`c_id`) REFERENCES `class`(`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

ALTER TABLE <数据表名> ADD CONSTRAINT <外键名>
FOREIGN KEY(<列名>) REFERENCES <主表名> (<列名>);

ALTER TABLE `student` ADD CONSTRAINT `s_class_id` FOREIGN KEY(`c_id`) REFERENCES `class`(`id`);

2.2 删除外键

外键还有一个很特殊的性质，你在创建外键之后，就不能再去修改了。这也很好理解，毕竟外键维护两张表数据之

间的完整性，修改外键会增加数据库的大量验证工作。所以，当你确实想要修改外键时，只能先删除，再增加（不

过这个成本依然很高，谨慎使用）。删除外键的语法如下：

我们可以尝试将之前 student 表中的外键约束删除，执行如下 SQL 语句：

需要注意，删除外键使用的是外键的名称，而不是外键列字段的名称。此时的你可能会产生疑问，如果我在增加外

键的时候没有指定外键名（外键名是可选的），我应该怎么办呢 ？继续看下面的内容吧。

2.3 查看外键的引用关系

接着上面的话题继续说，我怎样知道表中的外键名称是什么呢 ？最简单的方式当然是查看下表的定义语句，可以看

到关于表的最完整信息。如下所示：

另外，你可以验证下在增加外键时不指定外键的名称，MySQL 是否会帮你填充一个名称。我们通过这种方式可以

查看一个表的外键关联信息，但是，如果我想反向查找这种关系呢 ？这种需求也很常见，当我们需要清理表的数据

时，就需要知道当前有哪些子表与之关联。

这些系统元数据当然存储在系统库中（你应该能够想到这一点），如下所示：

ALTER TABLE 表名 DROP FOREIGN KEY 外键名;

mysql> ALTER TABLE `student` DROP FOREIGN KEY `s_class_id`;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

-- SHOW CREATE TABLE 可以查看表的定义语句
mysql> SHOW CREATE TABLE student\G
*************************** 1. row ***************************
 Table: student
Create Table: CREATE TABLE `student` (
 `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键 id',
 `name` varchar(64) NOT NULL COMMENT '姓名',
 `c_id` int(11) NOT NULL COMMENT '班级 id',
 PRIMARY KEY (`id`),
 KEY `s_class_id` (`c_id`),
 CONSTRAINT `s_class_id` FOREIGN KEY (`c_id`) REFERENCES `class` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

可以看到，通过查询 INFORMATION_SCHEMA 系统库中的 KEY_COLUMN_USAGE 表（属性列的含义比较简

单，这里不过多说明）就得到了子表的相关信息。如果要做清理数据的工作，可以先删除掉子表中的外键约束，再

去处理母表。

3. 外键的应用

外键约束很有用，它不仅仅能够维护多个表之间数据的完整性，而且还会让我们的编码工作简单许多（因为数据正

确性不再需要使用代码去维护）。另外，外键还能够约束多种关系，接下来，我将以广告系统的应用来举例说明怎

样使用外键。

3.1 一对一关系的应用

当一张表的数据列太多，数据量庞大的时候，最好的办法就是拆表，把一张表拆分成两张或多张表。但是，表记录

之间需要有关联关系，要保证数据的正确、完整性。我这里以广告系统中的广告创意（物料）举例，首先，来看一

看原表的定义：

考虑到 creative 表数据列过多，我们可以把它拆分成两张表：creative（创意表）、creative_detail（创意详情

表）。建表语句如下所示：

mysql> SELECT
 -> TABLE_NAME,
 -> COLUMN_NAME,
 -> CONSTRAINT_NAME,
 -> REFERENCED_TABLE_NAME,
 -> REFERENCED_COLUMN_NAME
 -> FROM
 -> INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 -> WHERE
 -> CONSTRAINT_SCHEMA = 'imooc_mysql'
 -> AND REFERENCED_TABLE_NAME = 'class';
+------------+-------------+-----------------+-----------------------+------------------------+
| TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME | REFERENCED_TABLE_NAME | REFERENCED_COLUMN_NAME |
+------------+-------------+-----------------+-----------------------+------------------------+
| student | c_id | s_class_id | class | id |
+------------+-------------+-----------------+-----------------------+------------------------+
1 row in set (0.06 sec)

-- 创意表建表 SQL 语句
CREATE TABLE `creative` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(45) NOT NULL DEFAULT '' COMMENT '创意名称',
 `type` varchar(20) NOT NULL DEFAULT 'image' COMMENT '类型',
 `width` int(11) NOT NULL DEFAULT '0' COMMENT '宽',
 `height` int(11) NOT NULL DEFAULT '0' COMMENT '高',
 `size` int(11) NOT NULL DEFAULT '0' COMMENT '大小，单位字节',
 `audit_status` varchar(10) NOT NULL DEFAULT 'pass' COMMENT '审核状态',
 `status` varchar(10) NOT NULL DEFAULT 'normal' COMMENT '创意状态',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '所属用户ID',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 `create_by` int(11) NOT NULL DEFAULT '0' COMMENT '创建者user_id',
 `update_by` int(11) NOT NULL DEFAULT '0' COMMENT '更新者user_id',
 `url` varchar(1024) NOT NULL DEFAULT '' COMMENT '物料地址',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=129 DEFAULT CHARSET=utf8 COMMENT='创意信息';

可以看到，除了外键约束之外（包括更新、删除的约束），我这里还使用了 UNIQUE KEY 去限制 c_detail_id 列

值唯一，这就整体保证了 creative 与 creative_detail 一对一的关系。

3.2 一对多关系的应用

一对多关系是外键约束最基本的应用，我们之前所讲解的学生与班级的关系就是一对多：一个学生属于一个班级，

而一个班级可以有很多学生。在广告系统中，这种一对多的关系是非常多的（其实在任何业务系统中都很多），例

如：一个创意属于一个用户，但是一个用户可以有很多创意。

创意表直接使用刚刚所介绍的 creative（未做拆分的创意表）即可，我们还需要去创建一个用户表，建表语句如下

所示：

创建用户表之后，我们给 creative 表增加外键约束即可，SQL 语句如下：

3.3 多对多关系的应用

-- 创意详情表
CREATE TABLE `creative_detail` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `type` varchar(20) NOT NULL DEFAULT 'image' COMMENT '类型',
 `width` int(11) NOT NULL DEFAULT '0' COMMENT '宽',
 `height` int(11) NOT NULL DEFAULT '0' COMMENT '高',
 `size` int(11) NOT NULL DEFAULT '0' COMMENT '大小，单位字节',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '所属用户ID',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 `create_by` int(11) NOT NULL DEFAULT '0' COMMENT '创建者user_id',
 `update_by` int(11) NOT NULL DEFAULT '0' COMMENT '更新者user_id',
 `url` varchar(1024) NOT NULL DEFAULT '' COMMENT '物料地址',
 `preview_url` varchar(1024) NOT NULL DEFAULT '' COMMENT '预览地址',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=129 DEFAULT CHARSET=utf8 COMMENT='创意详情';

-- 创意表
CREATE TABLE `creative` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(45) NOT NULL DEFAULT '' COMMENT '创意名称',
 `audit_status` varchar(10) NOT NULL DEFAULT 'pass' COMMENT '审核状态',
 `status` varchar(10) NOT NULL DEFAULT 'normal' COMMENT '创意状态',
 `c_detail_id` int(11) NOT NULL COMMENT '与创意详情表关联',
 PRIMARY KEY (`id`),
 UNIQUE KEY `c_detail_id` (`c_detail_id`),
 CONSTRAINT `creative_ibfk_1` FOREIGN KEY (`c_detail_id`) REFERENCES `creative_detail` (`id`)
 ON DELETE CASCADE
 ON UPDATE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=129 DEFAULT CHARSET=utf8 COMMENT='创意信息';

-- 用户表
CREATE TABLE `user` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_name` varchar(128) NOT NULL DEFAULT '' COMMENT '用户名',
 `user_status` int(10) NOT NULL DEFAULT '0' COMMENT '用户状态',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 `create_by` bigint(20) NOT NULL DEFAULT '0' COMMENT '创建者 user_id',
 `update_by` bigint(20) NOT NULL DEFAULT '0' COMMENT '更新者 user_id',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8 COMMENT='用户信息表';

ALTER TABLE `creative` ADD CONSTRAINT `user_user_id` FOREIGN KEY(`user_id`) REFERENCES `user`(`id`) ON DELETE CASCADE ON UPDA
TE CASCADE;

对于多对多的场景，我还是以创意表去解释说明。在广告系统中，推广单元代表一次广告的投放过程，所以，必然

会关联创意，且可以关联多个创意（轮播广告）。但同时，创意同样可以应用在多个推广单元中去，这也很好理

解。那么，创意与推广单元就构成了多对多的关系，即一个创意可以关联多个推广单元，而一个推广单元也可以关

联多个创意。

对于多对多关系，我们必须要创建第三张表，用来专门记录两张表之间的联系。不管第三张表，我们先来把推广单

元表创建出来（创意表仍然沿用之前未拆分的表）：

执行以上建表语句，我们就有了 creative 和 ad_unit 表，且它们之间目前还没有任何联系。好的，重点来了，我们

需要去创建第三张表实现关联了。建表语句如下：

可以看到，creative_2_ad_unit 表中包含了两个外键约束，分别与 creative 和 ad_unit 表的主键相关联。以此，实

现了两张表的多对多关系。同时，这也是一张表中存在多个外键约束的经典应用。

4. 总结

外键很特殊，它虽然非常好用、非常有价值，但是却被隐藏的很深。那么，到底要不要在业务系统中使用外键呢 ？

这其实是个很泛的问题，更多的是看你对外键的理解。我在这一节中讲解的三个外键使用案例你需要去认真思考，

搞清楚它们分别解决了什么问题。以便将来，在遇到类似的问题时（相信我，这概率很大），能够做到从容不迫、

得心应手。

5. 问题

你在工作中使用过外键吗 ？是怎么使用的呢 ？

对于外键的 UPDATE、DELETE 约束，试一试它们会对母表和子表产生怎样的影响 ？

根据你的理解，谈一谈你觉得外键适用的场景 ？

6. 参考资料

《高性能 MySQL（第三版）》

-- 推广单元表
CREATE TABLE `ad_unit` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `unit_name` varchar(48) NOT NULL COMMENT '推广单元名称；',
 `unit_state` varchar(24) NOT NULL DEFAULT 'ready' COMMENT '推广单元状态',
 `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '实际消费',
 `create_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '推广单元创建类型',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='推广单元信息';

CREATE TABLE `creative_2_ad_unit` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键 id',
 `creative_id` int(11) NOT NULL,
 `ad_unit_id` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`id`),
 CONSTRAINT `creative_2_ad_unit_ibfk_1` FOREIGN KEY (`creative_id`) REFERENCES `creative` (`id`)
 ON DELETE CASCADE ON UPDATE CASCADE,
 CONSTRAINT `creative_2_ad_unit_ibfk_2` FOREIGN KEY (`ad_unit_id`) REFERENCES `ad_unit` (`id`)
 ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='创意与推广单元多对多关联表';


17 分区表是什么，又该怎么使用
呢？ 

19 听过存储过程，但是你会用
吗？

《高性能 MySQL（第三版）》

MySQL 官方文档：FOREIGN KEY Constraints

MySQL 官方文档：FOREIGN KEY Constraint Differences

MySQL 官方文档：Using Foreign Keys

MySQL 官方文档：Foreign Key Optimization

}

https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.7/en/ansi-diff-foreign-keys.html
https://dev.mysql.com/doc/refman/5.7/en/example-foreign-keys.html
https://dev.mysql.com/doc/refman/5.7/en/foreign-key-optimization.html

	1. 聊一聊外键
	1.1 外键的前世今生
	1.2 外键的概念
	1.3 外键的优缺点

	2. 外键的操作
	2.1 增加外键
	2.2 删除外键
	2.3 查看外键的引用关系

	3. 外键的应用
	3.1 一对一关系的应用
	3.2 一对多关系的应用
	3.3 多对多关系的应用

	4. 总结
	5. 问题
	6. 参考资料

