
更新时间：2020-05-11 09:27:46

21 经常听到分库分表，但是怎样分呢？

当我们的业务不断发展、数据量急剧膨胀时，数据库性能成为系统瓶颈会越来越明显，例如：存储容量限制、连接

池容量、读写性能、索引等等。由此，也就出现了各种技术或解决方案。其中，使用缓存和分库分表一定是出场率

最高的两类解决方案。缓存是比较简单的，也就是把原本磁盘中（MySQL 的数据存储在磁盘中）的数据搬到内存

中。而对于分库分表来说，就显得有些 “神秘感” 了。那么，这一节里，我将对分库分表进行详细的解读。

1. 分库分表概述

业务系统初运行时（一个大概的时间概念），单机数据库基本都是够用的。但是，随着业务扩张，我们会逐渐的切

换到读写分离。即从库负责读，主库负责写，从库同步主库的数据，也就是经典的主从同步架构。但是，这解决的

是并发访问的问题，如果业务发展的同时，数据量再迅速增长，就需要去考虑分库分表的架构了。

1.1 为什么要分库分表

对于 MySQL 来说，有人做过测算，单库的数据量在 5000 万以内时，性能表现是比较好的，超过这个值（并不是

一定的，也要综合看数据的复杂度）之后，性能会随着数据量的增大而降低。对于单表来说，情况也是类似的，当

单表的数据量达到 1000 万之后，即使添加从库、优化索引，性能也是下降的非常厉害。所以，分库分表的问题也

就是单库或单表的问题：

单库数据量太大：单库所在服务器磁盘空间受限、IO 瓶颈等

单表数据量太大：增删改查速度慢、索引膨胀等等

人的差异在于业余时间。——爱因斯坦

file:///read/71/article/1795
file:///read/71/article/1838

当遇到这些问题之后，就需要考虑去做分库分表了。分库是将原来的单库分为多个更小的库，而分表是将原来的表

分为多个更小的表。

1.2 什么时候去考虑分库分表

首先来说，分库分表是 MySQL 的高级应用，它的实现和使用难度都比较高，而且需要改动业务代码。所以，在不

需要分库分表的时候，就不要这样做。这也是理所当然的，并不是说所有的表都需要切分，或者是表大到一定程度

就需要切分，例如：数据报表通常很大，但是几乎不会对报表做切分。这也是关于分库分表的第一条建议：能不切

分就不要切分（或者考虑使用其他的办法解决性能瓶颈）。

下面，我来对可以尝试去做分库分表的场景进行解释说明：

数据量过大（可以参考之前对单库和单表的介绍），对查询、插入、运维等等造成影响

表中存在过多大字段，例如 MEDIUMTEXT、LONGTEXT 等，考虑将这部分大字段拆分出去

数据量增长太快，即插入数据较多的业务系统，索引成为系统瓶颈

当然，关于分库分表的原因和场景还有很多，就像我们在做事一样，不一定要墨守成规。如果确实需要，且 “故事”

说得通，当然也可以去做分库分表。

2. 分库分表的策略

简单的说，分库分表就是按照某种规则，将单库或单表分为多库或多表。而这里的规则就是依据切分类型，分为垂

直切分和水平切分。下面，我们就来看一看这两种切分方式的思想、方法和优缺点。

2.1 垂直切分

垂直切分可以同时作用于库和表，即垂直分库和垂直分表。垂直分库就是根据业务的特性，将关联程度不同的表放

到不同的库中。它的思想与微服务的思想是类似的，就是将大的单体系统解耦，按照业务耦合的程度不同，切分成

小的功能模块。例如：对于一个电商系统来说，库中可能会有用户表、商品表、订单表、反馈表等等；我们就可以

将这些表分到三个库中：

用户信息库：用户表

商品及订单库：商品表、订单表

附属信息库：反馈表

这样，在查询不同的数据时就可以去查询不同的库，降低单库的查询和存储压力。

对于垂直分表来说，拆分的对象是数据表列，需要这样做的原因主要有两个：第一，数据表中字段数过多；第二，

数据表中存在很多大数据列。此时，可以把一张表拆分成两张或者多张表，每张表中存储行记录的子集。同时，数

据库以行为单位将数据加载到内存中，表中行记录较短，内存能加载更多的数据，命中率更高，减少了磁盘IO，从

而提升了数据库性能。

垂直切分有很多优点，但是也有很多代价，下面，我来总结下这种切分方式的优缺点：

垂直切分的优点

消除库中存在的业务表耦合，使数据表之间的关系更加的清晰

将数据库的连接资源、单机硬件资源隔离开，更利于业务的扩展

垂直切分的缺点

表与表之间很难做到完整的 JOIN，只能通过多次查询的方式聚合数据

查询多个表会将单表事务升级为分布式事务，实现难度大大增加

仍然可能会存在单表数据量过大的问题

2.2 水平切分

水平切分也被称作是 “横切”，它虽然是针对于数据表的。当一张数据表的数据量非常庞大，且即使是做了垂直拆分

依然是存在瓶颈，这时候就需要对表进行水平切分了。即将一张表的数据记录按照一定的规则分散到多张表或多个

库（多个库存储拆分出的多张表）中。最终使得每张拆分的表记录只是原表的子集，大大降低了单表的数据量。

把一张表的记录分散到多张表（表存在多个库中也是一样的道理，总的思想肯定是分出来多张表）中，那么，这个

分散怎么去做呢 ？即水平切分的规则有哪些呢 ？下面，我来介绍一些经典的水平拆分规则：

按照时间区间或者自增 id 来切分：这比较好理解，就是数据分段存储，例如100万行数据一个表，或者一个

季度的数据切分为一个表。这样做的优点是简单、单表数据量可控；但是缺点也很明显，非常容易造成热点数

据（最近的数据访问的频率最高）

哈希取模切分：这个规则是计算某一列或几列的哈希值，再去取模散列到对应的表中。通常，我们会选择

user_id 做哈希取模。这种方式的优点是数据分片比较均匀，不易出现热点问题；缺点是扩容成本高（可以考

虑一致性哈希）

相对来说，水平切分不会存在单表、单库数据量过大的问题，且应用改动的成本也会比较低。但同时，它也与垂直

切分有着相似的缺陷。例如：数据记录跨多表时，也存在分布式事务问题；表之间的 JOIN 过程将会非常困难等

等。

3. 分库分表引发的问题

分库分表虽然能够缓解单库、单表对数据库造成的压力瓶颈，但是也同样会带来许多问题。了解这些问题，并确定

能够给出解决方案时，再去考虑对你的业务系统进行分库分表。否则，不要 “轻举妄动”，很可能会是事倍功半的。

3.1 全局主键问题

由于分库分表之后，一张表会跨越多张表，甚至是多个库，此时，数据库的自增 id 将会变得没有意义。因此，我

们必须需要单独设计全局主键，以避免主键重复，引起业务系统的 KEY 冲突问题。

其实，这是一个比较成熟的问题，即有很多解决方案。下面，我来总结说明几种常见的做法：

UUID：它被称为通用唯一识别码，由一组32位数的16进制数字所构成，目的是让分布式系统中的所有元素都

能有唯一的识别信息。它可以本地生成，性能很高；但是，由于它很长，会占用大量的存储空间

额外的自增表：单独创建一张表，只有一个自增主键，而这个主键则用于分库分表的全局主键。这种做法需要

依赖于其他表，且存在单点问题，当这张自增表出现故障，导致系统不可用

分布式全局唯一 ID 生成算法：这种算法有很多，例如：Twitter 的 snowflake、美团的 Leaf 等等

由于前两种解决方案各自存在的问题较为明显，且不易解决。所以，业界在全局主键的生成问题上，都会使用 “分

布式全局唯一 ID 生成算法”。记住，在有很多开源实现时，就不需要自己重复造轮子。

3.2 事务一致性问题

分库之后，当业务更新（插入、更新、删除）的数据分布在不同的库中时，就会带来跨库事务问题。对于分布式事

务来说，一般可以采用 “XA 协议”、2PC（两阶段提交）或 3PC（三阶段提交）来提交。

虽然分布式事务解决方案最大程度的保证了数据库操作的原子性，但是在提交事务时需要协调多方，对提交事务造

成了延迟，且会增高死锁的概率。所以，如果我们的业务系统不追求瞬时的强一致性，可以采用事务（日志）补偿

的方式来达到最终的一致性。

3.3 关联查询（JOIN）问题

在分库分表之前，我们可以通过 JOIN 多表的方式来查询复杂的数据。但是切分之后，数据可能分布在不同的节点

上，此时再去 JOIN 几乎是不可能的事情。所以，对于分库分表的情况，我们通常的建议是：“抛弃 JOIN”。

那么，为了解决关联查询的问题，我们可以想一些别的办法。例如：

字段冗余设计：这是一种反范式的设计，也是空间换时间的典例，它是将需要多次用到的数据分布到多张表

中，避免了 JOIN 查询

数据组装：也就是多次查询，将多次查询的数据组装在一起构成整体数据

拆分查询：注意，这里所说的查询指的是前端发起的查询请求，即前端把复杂查询（多表）拆分成多次简单查

询（单表）

由此，可以得出结论：分库分表对于 “大” 业务系统几乎是不可避免的，但是，分库分表同样存在非常严重的缺陷。

如果你不能解决这些问题或给出合理的解决方案，慎用分库分表，反而是可以考虑使用分布式数据库（例如

HBase）去代替。

4. 分库分表案例

说了很多分库分表的理论、注意事项与可能存在的问题，下面，我们来看看一个真实的案例，怎样对一张大表做切

分，以及对于可以预见的分库分表，怎样去定义业务表。

4.1 用户信息业务场景

用户信息一定是存储在用户表中，通常我们直接称之为 user 表。随着业务发展，注册的用户越来越多（这通常都

是大型项目面临的问题，不过，你可以随意扩展到用户订单表、商品表等等类似的场景），user 表中的记录也会膨

胀的越来越厉害。最终，延迟过大、性能过低，不得不采取分库分表的手段解决问题。好的，我先给出 user 表的

建表语句：

注意到这张表定义了很多列（实际情况可能会更加复杂，而且会有很多索引），且有不少列是字符类型。即使是我

们可以通过在 SELECT 语句中指定需要的列数据，也不可避免的会让这张表存储大量的数据。

不论是做什么，你都需要遵循一定的原则：当你想做一件事之前，你一定要把 “前因后果” 想清楚了。对于当前的用

户表来说，我们需要搞清楚在业务逻辑中会怎样使用这张表：

1% 的用法：使用 user_name、email、phone 登录系统（因为登陆之后，session 会一直保存，不需要用户重

复登录）

99% 的用法：使用 user_id 查询用户信息（各个服务模块都可能需要用户信息）

目前为止，我们已经搞清楚了业务场景和需求。对于遇到的问题，也是非常明显的：user 表会越来越大，严重影响

查询、插入和更新的性能。

4.2 用户信息切分

现在开始，我们需要对 user 表进行切分了，关于切分，你需要遵守一个规则：

先垂直切分，再做水平切分

具体为什么要这样做，这个问题留给大家去思考。我们先按照垂直切分，把 user 表切分为两张表（或者更多的

表）。如下所示：

CREATE TABLE `user` (
 `user_id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_name` varchar(128) NOT NULL DEFAULT '' COMMENT '用户名',
 `password` varchar(128) NOT NULL DEFAULT '' COMMENT '密码',
 `email` varchar(128) NOT NULL DEFAULT '' COMMENT '电子邮箱',
 `phone` varchar(128) NOT NULL DEFAULT '' COMMENT '手机号码',
 `gender` tinyint(4) NOT NULL DEFAULT '0' COMMENT '性别',
 `age` tinyint(4) NOT NULL DEFAULT '0' COMMENT '年龄',
 `id_card` varchar(128) NOT NULL DEFAULT '' COMMENT '身份证号码',
 `intro` varchar(1024) NOT NULL DEFAULT '' COMMENT '个人信息',
 `user_company` varchar(50) NOT NULL DEFAULT '' COMMENT '用户公司',
 `user_department` varchar(45) NOT NULL DEFAULT '' COMMENT '用户部门',
 `user_duty` varchar(100) NOT NULL DEFAULT '' COMMENT '用户具体职责',
 `user_industry` varchar(100) NOT NULL DEFAULT '' COMMENT '用户所处行业',
 `user_status` int(10) NOT NULL DEFAULT '0' COMMENT '用户状态',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户信息表';

可以看到，user 表被拆分成了 user_base 和 user_extra 两张表，关于它们：

两张表各自保存 user 表的部分信息，即是 user 表数据的子集

两张表都定义了 user_id，作为数据关联使用（user_id 是分库分表的核心，理论上所有的表都需要定义

user_id）

user_base 表中不包含 “复杂信息”，因为这些使用的频率不是很高

经过这样分表之后，我们的大部分操作都应该直接对应到 user_base 表。除非需要更详细的信息，才需要去访问

user_extra 表。但是，垂直切分不能避免单表数据量过大，当数据量继续增长时，我们就需要做水平切分了。

对表做水平切分我们选择使用 “哈希取模” 的方式，这里，user_id 就是天然的划分依据。首先，需要设计两个哈希

函数（简单的哈希算法就可以）：

HASH_1：确定水平切分的记录属于哪个数据库

HASH_2：确定水平切分的记录属于哪张表

接下来，我们需要预估用户增长的规模，例如：注册用户数能够达到1亿。那么，可以计算：

数据分到4个库（库的个数可以自定义）中，那么，每个库包含：1亿 / 4 = 2500万

每个库中定义5张表（表的个数也可以自定义），那么，每张表包含：2500万 / 5 = 500万

那么，可以先通过 HASH_1(user_id) % 4 确定用户记录属于哪个库，再通过 HASH_2(user_id) % 5 确定用户记录

属于哪张表。自此，也就完成了用户信息的分库分表。

5. 总结

分库分表听起来是很有意思的，但是做起来显然没有那么简单，你需要考虑的问题太多，更让你头疼的是这些问题

往往没有很好的解决方案。所以，大多数时候，理解分库分表的思想和原理即可。不到万不得已，不要轻易尝试。

-- 用户基本信息表
CREATE TABLE `user_base` (
 `user_id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_name` varchar(128) NOT NULL DEFAULT '' COMMENT '用户名',
 `password` varchar(128) NOT NULL DEFAULT '' COMMENT '密码',
 `email` varchar(128) NOT NULL DEFAULT '' COMMENT '电子邮箱',
 `phone` varchar(128) NOT NULL DEFAULT '' COMMENT '手机号码',
 `gender` tinyint(4) NOT NULL DEFAULT '0' COMMENT '性别',
 `age` tinyint(4) NOT NULL DEFAULT '0' COMMENT '年龄',
 `user_status` int(10) NOT NULL DEFAULT '0' COMMENT '用户状态',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户基本信息表';

-- 用户附加信息表
CREATE TABLE `user_extra` (
 `user_id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `id_card` varchar(128) NOT NULL DEFAULT '' COMMENT '身份证号码',
 `intro` varchar(1024) NOT NULL DEFAULT '' COMMENT '个人信息',
 `user_company` varchar(50) NOT NULL DEFAULT '' COMMENT '用户公司',
 `user_department` varchar(45) NOT NULL DEFAULT '' COMMENT '用户部门',
 `user_industry` varchar(100) NOT NULL DEFAULT '' COMMENT '用户所处行业',
 `user_duty` varchar(100) NOT NULL DEFAULT '' COMMENT '用户具体职责',
 PRIMARY KEY (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户附加信息表';

 20 数据汇总优化查询方案设计 
22 binlog 实现增量数据收集方案

的设计

6. 问题

使用一致性哈希会降低扩容成本，你知道这是为什么吗 ？

分库分表为什么要先垂直切分，再去水平切分 ？这样做有什么优点，或者说反过来有什么缺点 ？

对于分库分表来说，user_id 是不可或缺的，这是为什么呢 ？

数据表做了切分之后，你知道怎么去做数据同步呢 ？如果想要不中断业务运行，又该怎么做呢 ？

user 表拆分之后，如果我想用 user_name、email、phone 去查询用户信息，怎样做效率会高呢（注意，数据分布

在多个库、多个表中，轮询自然是不合理的）？

7. 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：Database Backup Methods

MySQL 官方文档：Optimizing for InnoDB Tables

MySQL 官方文档：InnoDB Cluster

}

https://dev.mysql.com/doc/refman/5.7/en/backup-methods.html
https://dev.mysql.com/doc/refman/5.7/en/optimizing-innodb.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html

	1. 分库分表概述
	1.1 为什么要分库分表
	1.2 什么时候去考虑分库分表

	2. 分库分表的策略
	2.1 垂直切分
	2.2 水平切分

	3. 分库分表引发的问题
	3.1 全局主键问题
	3.2 事务一致性问题
	3.3 关联查询（JOIN）问题

	4. 分库分表案例
	4.1 用户信息业务场景
	4.2 用户信息切分

	5. 总结
	6. 问题
	7. 参考资料

