
更新时间：2020-05-11 09:27:46

24 大数据量插入遇到瓶颈，我该怎样做性能优化呢？

数据迁移、数据恢复往往都需要做大数据量的插入操作，但是，不同的插入方法对性能的影响也是非常大的。这一

节里，我将会分析数据插入耗时的因素，以及常见的数据插入方法。通过比对不同插入方法的性能以及它们各自的

优缺点，才能确定哪一种才是你所需要的。

1. 插入数据分析

我们在客户端执行一条数据插入命令就可以实现 MySQL 服务器的插入操作，但是，这背后其实是做了很多工作

的。这里，我们先来看一看插入数据影响耗时的因素有哪些。之后，再去介绍下 MySQL 支持的数据插入方法。

1.1 插入数据的过程

在 MySQL 中，能够插入数据是很多个组件（或流程）共同配合的成果，且每个组件所耗时的比例也是不相同的。

我们先来看一看插入数据都会涉及哪些过程：

服务器与客户端建立连接，耗时占比最多，大约 30%

发送插入数据到服务器，需要通过网络连接，耗时大约 20%

查询分析，包括对 SQL 语法、数据、权限等校验，耗时大约 20%

插入记录到数据表中，耗时大约 10%

更新索引，耗时大约 10%

关闭服务器与客户端的连接，耗时大约 10%

如果说我比别人看得要远一点，那是因为我站在巨人的肩上。——牛顿

file:///read/71/article/1843
file:///read/71/article/1849

但是，需要注意，这里所说的是插入一条数据记录，对于大数据量的插入操作来说，插入记录和更新索引肯定是最

为耗时的地方。

1.2 插入数据有哪些常用方法

MySQL 提供了多种方式用于插入数据，下面，我来总结一些常见的方法：

顺序 INSERT 插入数据：一次执行一条数据记录的插入

批量 INSERT 插入数据：一次执行多条数据记录的插入

LOAD DATA INFILE 插入数据：从文本文件中执行数据记录的插入

接下来，我们就来看一看这几种方法怎样去应用，以及对它们插入耗时的分析。以此，来确定哪一种方法更好，哪

一种方法更适合你的场景。

2. 顺序 INSERT 插入数据

为了更好的分析插入性能，我这里以 Java 语言去编写并执行插入过程，对于其他语言也都是类似的。这里，我以

worker 表来做演示，首先看一看它的结构：

由于插入数据量较大，所以，可以忽略字段取值的复杂度。同时，不仅仅对于 “顺序 INSERT”，其他的几种数据插

入方法也一样会使用 worker 表来做对比测试。

2.1 插入过程详解

想要获取更加有代表性的数据，就需要插入更多的数据量，那么，直接在 MySQL 客户端中执行 INSERT 语句是不

合适的。我这里直接以测试用例（SpringBoot、JUnit）的形式完成代码，当然，你也可以写成任意的形式。首先，

我们需要去定义一些常量：

mysql> DESC worker;
+---------+---------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------------------+------+-----+---------+----------------+
id	bigint(20) unsigned	NO	PRI	NULL	auto_increment
type	char(64)	NO	MUL		
name	char(64)	NO		NULL	
salary	bigint(20) unsigned	YES		NULL	
version	bigint(20)	NO		0	
+---------+---------------------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

// MySQL 连接信息、用户名、密码定义
private static final String URL = "jdbc:mysql://localhost:3306/imooc_mysql";
private static final String USERNAME = "root";
private static final String PASSWORD = "root";

// 插入语句格式化定义
private static final String INSERT_SQL = "INSERT INTO `worker`(type, name, salary, version) " +
 "VALUES ('%s', '%s', %d, %d)";

// worker 表各字段取值定义
private static final List<String> TYPES = Arrays.asList("A", "B", "C", "D", "E", "F");
private static final List<String> NAMES = Arrays.asList("G", "H", "I", "J", "K", "L");
private static final List<Integer> SALARYS = Arrays.asList(1000, 2000, 3000, 4000, 5000, 6000);
private static final List<Integer> VERSIONS = Arrays.asList(0, 1, 2, 3, 4, 5, 6);

// 随机数对象定义
private static Random random = new Random();

接下来，编写插入数据的逻辑。很显然，对于顺序 INSERT 操作，我们使用一个 for 循环就可以完成。代码及其注

释如下所示：

很明显，我们只需要调用 insertToMySQL 方法，并传递想要插入的 count 参数就可以了。下面，我们依次执行

100、1000、10000 条（这些数字不具有特殊含义，当然，你可以任意指定。但是，为了方便对比，接下来的插入

方法也要插入相同体量的数据）INSERT 操作。代码如下：

/**
 * <h2>顺序插入数据逻辑</h2>
 * @param count 插入条数
 * */
private void insertToMySQL(int count) {

 try {
 // JDBC 与 MySQL 建立连接
 Class.forName("com.mysql.jdbc.Driver");
 Connection conn = DriverManager.getConnection(URL, USERNAME, PASSWORD);
 Statement statement = conn.createStatement();

 // 计时器定义, 并开始计时
 StopWatch stopWatch = new StopWatch();
 stopWatch.start();

 // for 循环构造 INSERT 语句, 并执行语句, 执行的次数由参数 count 控制
 for (int i = 0; i < count; i++) {
 String sql = String.format(
 INSERT_SQL,
 TYPES.get(random.nextInt(TYPES.size())),
 NAMES.get(random.nextInt(NAMES.size())),
 SALARYS.get(random.nextInt(SALARYS.size())),
 VERSIONS.get(random.nextInt(VERSIONS.size()))
);

 statement.executeUpdate(sql);
 }

 statement.close();

 // 计时器停止计时
 stopWatch.stop();

 // 打印执行耗时日志
 log.info("time elapsed for {} inserts: {}s", count, stopWatch.getTotalTimeSeconds());

 conn.close();
 } catch(SQLException | ClassNotFoundException e) {
 e.printStackTrace();
 }
}

2.2 插入耗时分析

执行上述的插入方法，我们可以得到每一次插入数据的打印日志，也就得到了每一次的操作耗时，总结如下表所

示：

插入条数 耗时

100 1.195s

1000 12.091s

10000 124.163s

可以看到，顺序 INSERT 的耗时是线性增长的，随着插入数据量的增大，操作过程是非常缓慢的。这种插入方式无

疑是比较慢的（对于软件工程来说，线性和指数增长都是低效的），它所耗时的地方在于：

每一次 INSERT 都需要一次网络 IO

每一次 INSERT 都需要一次 SQL 语句解析

每一次 INSERT 都需要一次数据写入（先写入缓冲区，再刷写到磁盘）

每一次 INSERT 都需要一次索引的更新

每一次 INSERT 都可能需要多次日志记录过程（查询日志、Binlog 日志等等）

每一次 INSERT 都需要一次事务的创建与提交

综上所述，正是由于每一次 INSERT 都需要 “经历” 很多个阶段，所以才导致了大数据量插入性能很低。在实际的

企业级开发中，涉及到大数据量插入问题时，选择这种方式是极不明智的做法。

3. 批量 INSERT 插入数据

INSERT 语句除了可以一次插入一条数据之外，还可以一次插入多条数据，且它们的语法也是相似的。例如，通过

INSERT 语句一次性往 worker 表中插入三条数据，可以执行命令：

但是，如果想要通过 INSERT 一次性插入大批量的数据，就需要去考虑 MySQL 中的 max_allowed_packet 参数。

这个参数会限制 MySQL 服务器接受的数据包大小，如果超过这个值时会导致大批量数据写入或更新失败。我们可

以把它设置为一个比较大的值，例如：

@Test
public void test100Insert() {

 insertToMySQL(100);
}

@Test
public void test1000Insert() {

 insertToMySQL(1000);
}

@Test
public void test10000Insert() {

 insertToMySQL(10000);
}

INSERT INTO `worker` (`type`, `name`, `salary`, `version`)
VALUES ('B', 'H', 2000, 1), ('C', 'I', 3000, 0), ('C', 'L', 6000, 0);

3.1 插入过程详解

由于基本的常量（MySQL Url、用户名、密码等等）都已经定义了，所以，我们只需要去完成插入逻辑就可以了。

其实，聪明的你一定可以想到，插入逻辑的核心一定是构造批量 INSERT 语句。代码和注释如下：

-- 设置服务器最大接受的数据包是 200M，且生效范围是 GLOBAL
mysql> SET GLOBAL max_allowed_packet = 2 * 100 * 1024 * 1024;
Query OK, 0 rows affected (0.00 sec)

-- 检验变量的值是否符合预期（需要退出当前 session，重新登录）
mysql> SHOW VARIABLES LIKE 'max_allowed_packet';
+--------------------+-----------+
| Variable_name | Value |
+--------------------+-----------+
| max_allowed_packet | 209715200 |
+--------------------+-----------+
1 row in set (0.00 sec)

同样，类似于顺序插入，我们也只需要调用 batchInsertToMySQL 方法，并传递想要插入的 count 参数就可以了。

下面，我们依次执行100、1000、10000条数据的批量 INSERT 操作。代码如下：

// 批量插入语句前缀
private static final String BATCH_INSERT_SQL_PREFIX = "INSERT INTO `worker`(type, name, salary, version) " +
 "VALUES";
// 批量插入语句后缀
private static final String BATCH_INSERT_SQL_SUFFIX = " ('%s', '%s', %d, %d)";

/**
 * <h2>批量插入数据逻辑</h2>
 * @param count 插入条数
 * */
private void batchInsertToMySQL(int count) {

 try {
 // JDBC 与 MySQL 建立连接
 Class.forName("com.mysql.jdbc.Driver");
 Connection conn = DriverManager.getConnection(URL, USERNAME, PASSWORD);
 Statement statement = conn.createStatement();

 StringBuilder sb = new StringBuilder();

 // for 循环构造插入列值语句, 执行的次数由参数 count 控制
 for (int i = 0; i < count; i++) {
 sb.append(
 String.format(
 BATCH_INSERT_SQL_SUFFIX,
 TYPES.get(random.nextInt(TYPES.size())),
 NAMES.get(random.nextInt(NAMES.size())),
 SALARYS.get(random.nextInt(SALARYS.size())),
 VERSIONS.get(random.nextInt(VERSIONS.size()))
)
);
 // 最后一个列值不需要加分号
 if (i + 1 < count) {
 sb.append(",");
 }
 }

 // 计时器定义, 并开始计时
 StopWatch stopWatch = new StopWatch();
 stopWatch.start();

 // 执行批量插入语句
 statement.executeUpdate(BATCH_INSERT_SQL_PREFIX + sb.toString());

 statement.close();

 // 计时器停止计时
 stopWatch.stop();

 // 打印执行耗时日志
 log.info("time elapsed for {} inserts: {}s", count, stopWatch.getTotalTimeSeconds());

 conn.close();
 } catch(SQLException | ClassNotFoundException e) {
 e.printStackTrace();
 }
}

3.2 插入耗时分析

执行以上三个测试用例，我们可以惊讶的发现它们的耗时（可以从打印的日志中得到）都是非常低的。总结如下表

所示：

插入条数 耗时

100 0.033s

1000 0.051s

10000 0.504s

其实，只要对照顺序插入而言，批量插入还是非常好理解的。这种方式效率高的原因主要是合并了日志、写入次

数、网络往返 IO 以及事务，它将多次的执行过程变成了一次执行过程。主要的耗时是客户端到服务器的大数据量

传输以及数据写入（表数据以及表索引）。正是由于批量执行的高效性，它也成为企业级开发中普遍采用的方式。

4. LOAD DATA INFILE 插入数据

MySQL 官方对 LOAD DATA INFILE 的描述是：用于高速的从一个文本文件中读取行，并把它写入数据表中。如

果我们不想编写代码，且恰好手边有这样的一份文本文件，可以尝试考虑这种方式去完成大批量的数据插入。接下

来，我们去看一看它的使用方法以及相关分析。

4.1 插入过程详解

由于它是 MySQL 提供的一种功能，我们先来看一看它的语法：

@Test
public void test100BatchInsert() {

 batchInsertToMySQL(100);
}

@Test
public void test1000BatchInsert() {

 batchInsertToMySQL(1000);
}

@Test
public void test10000BatchInsert() {

 batchInsertToMySQL(10000);
}

确实，想要把它的每一个参数或选项搞清楚是件不容易的事。不过，类似于其他工具（就像是惯例一样），重要的

“部分” 也并不多。下面，我将讲解 LOAD DATA INFILE 命令最常用的选项或参数的含义：

LOW_PRIORITY | CONCURRENT：这两个关键字控制写表过程中存在读表的行为

LOW_PRIORITY：在写入过程中，如果有客户端读表，写入将会被延后，直至没有任何客户端读表再继

续写入。但是，这个选项仅适用于表锁存储引擎，例如 MyISAM、MEMORY、MERGE

CONCURRENT：允许在写入过程中其他客户端读取表内容

LOCAL：标识从客户端所在主机读取文件，否则，文件必须位于 MySQL 服务器上

REPLACE | IGNORE：控制对现有唯一键记录重复处理的方式

REPLACE：新纪录替换重复的原唯一键记录

IGNORE：跳过唯一键重复的行

如果不指定任何一个选项，遇到重复唯一键时，报错并停止数据插入

FIELDS 子句：指定文件记录列值的分割格式，如果使用这个子句，则至少要提供以下选项中的一个

TERMINATED BY：分隔符，行记录中每个列值的分隔符

ENCLOSED BY：控制哪些字段应该包裹在引号里面

ESCAPED BY：转义字符

LINES 子句：指定文件记录行的分割格式，默认是换行符 ‘\n’

STARTING BY：所有的行都包含相同的前缀，使用这个选项可以忽略前缀。特别地，如果某行不包含前

缀，则整行都会被跳过

TERMINATED BY：行分隔符

IGNORE number：忽略文件开始的 number 行，例如表头

col_name_or_user_var：如果想导入表的某些列，可以显示的指定列名

LOAD DATA
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var
 [, col_name_or_user_var] ...)]
 [SET col_name={expr | DEFAULT},
 [, col_name={expr | DEFAULT}] ...]

可以知道， LOAD DATA INFILE 数据插入方式最核心的工作是构造文本文件。我这里同样使用 Java 语言去完成这

件事，代码如下：

文本文件构造完成之后，先别着急去执行 LOAD DATA INFILE 命令，因为你大概率会遇到 “ERROR 1290

(HY000): The MySQL server is running with the --secure-file-priv option so it cannot execute this statement” 错误

（可以去尝试执行下看看）。这其实是受到 secure_file_priv 参数的影响，它用于限制数据表导入导出。其取值和

含义如下：

NULL：默认值，限制 MySQL 表数据不允许导入导出

/tmp：限制 MySQL 表数据只能在 /tmp 目录中执行导入导出，其他目录不能执行

空值：没有限制

另外，secure_file_priv 是一个只读参数，我们只能通过修改 MySQL 的配置文件，并重启 MySQL 服务来解决问

题。打开 my.cnf，并加入如下配置：

最后，就可以通过 MySQL 客户端完成数据导入工作，如下所示：

// 数据目录及文件名格式定义（目录 /tmp/load_data_file 需要存在）
private static final String LOAD_DATA_FILE = "/tmp/load_data_file/%d_worker.txt";

/**
 * <h2>构造 LOAD DATA INFILE 所需的数据文件</h2>
 * */
@Test
public void buildLoadDataFile() throws IOException {

 // 定义需要写入的记录数
 List<Integer> workerCount = Arrays.asList(100, 1000, 10000);

 for (Integer integer : workerCount) {

 FileWriter fw = new FileWriter(String.format(LOAD_DATA_FILE, integer), true);

 for (int j = 0; j < integer; j++) {

 BufferedWriter bw = new BufferedWriter(fw);
 // 构造随机插入的数据，列值之间以逗号分隔
 String line = String.format("%s,%s,%s,%s",
 TYPES.get(random.nextInt(TYPES.size())),
 NAMES.get(random.nextInt(NAMES.size())),
 SALARYS.get(random.nextInt(SALARYS.size())),
 VERSIONS.get(random.nextInt(VERSIONS.size())));

 bw.write(line);
 bw.newLine();
 bw.flush();
 }

 fw.close();
 }
}

secure_file_priv = ''

同样的方式，我们也可以完成1000和10000条数据的插入工作（命令的选项之前都有说明，这里不再赘述）。

4.2 插入耗时分析

通过执行三个数据导入（插入）命令，我们可以收集客户端中打印的执行时间，总结如下表所示：

插入条数 耗时

100 0.01s

1000 0.06s

10000 0.28s

经过对比可以发现， LOAD DATA INFILE 与批量 INSERT 的耗时是差不多的。这其实也很好理解，它们的原理都

是类似的：一次性将数据发给服务器，经过一次校验、写日志、写数据、更新索引的过程即可。同样，也正是由于

这种方式的插入效率很高，自然也就成为企业级开发中的可选方案。

5. 总结

通过对比三种大批量数据插入的方式，我们能够确定每一种方式的优劣性，当然也就能够在需要的时候做出合适的

选择。对于大数据量插入需求来说，顺序插入不仅会影响客户端的性能，同样会给服务器带来很大的压力；批量插

入和 LOAD DATA INFILE 都具有很高的性能，使用它们其中的任何一种都是可行的，只是需要考虑工作重心的问

题。最后，还要好好把握每一种数据插入方式性能损耗的地方，也就是即使很慢，也要知道慢的原因。

6. 问题

你做过大批量数据插入吗 ？是使用哪一种方式完成的呢 ？

对于批量 INSERT 过程，可以考虑使用多线程去完成吗 ？你觉得性能会有提升吗 ？

你能总结三种数据插入方式耗时的地方吗 ？

如果你遇到了大数据量插入的需求，你会选择使用什么方法呢 ？为什么 ？

7. 参考资料

mysql> LOAD DATA INFILE '/tmp/load_data_file/100_worker.txt' INTO TABLE `imooc_mysql`.`worker`
 -> FIELDS TERMINATED BY ','
 -> LINES TERMINATED BY '\n'
 -> (type, name, salary, version);
Query OK, 100 rows affected (0.01 sec)
Records: 100 Deleted: 0 Skipped: 0 Warnings: 0


23 关于 SQL 查询语句，有什么好
的建议吗？ 

25 加速 order by 查询，可以从哪
些方面做优化呢？

《高性能 MySQL（第三版）》

MySQL 官方文档：INSERT Statement

MySQL 官方文档：LOAD DATA Statement

MySQL 官方文档：Optimizing INSERT Statements

MySQL 官方文档：Concurrent Inserts

MySQL 官方文档：The InnoDB Storage Engine

}

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/insert-optimization.html
https://dev.mysql.com/doc/refman/5.7/en/concurrent-inserts.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

	1. 插入数据分析
	1.1 插入数据的过程
	1.2 插入数据有哪些常用方法

	2. 顺序 INSERT 插入数据
	2.1 插入过程详解
	2.2 插入耗时分析

	3. 批量 INSERT 插入数据
	3.1 插入过程详解
	3.2 插入耗时分析

	4. LOAD DATA INFILE 插入数据
	4.1 插入过程详解
	4.2 插入耗时分析

	5. 总结
	6. 问题
	7. 参考资料

