
更新时间：2020-05-11 09:27:46

25 加速 order by 查询，可以从哪些方面做优化呢？

ORDER BY 是用于对查询结果集排序（忽略正序和逆序，原理是一样的）的关键字，它同样也是非常高频的出现

在我们的日常工作、学习中。我们在使用 ORDER BY 的 “经历” 中，大概率会遇到查询缓慢的性能问题。那么，你

知道为什么 ORDER BY 会慢吗 ？如果想要提高性能，我们又可以怎样去做呢 ？这一节里，我们就来详细的解读

下关于 ORDER BY 查询的问题。

1. ORDER BY 的执行过程

就好像我们在写代码一样，出现问题了，先要去看异常日志，再去看代码的执行逻辑，知道了它是怎么执行的之

后，再去解决问题。所以，我们暂时不要去想着优化 ORDER BY 查询，先把它的执行过程搞清楚，再去分析 “慢”

的根本原因，最后才去做合理的优化。

1.1 全字段排序

为了更好的对执行过程（查询语句）进行说明，我们首先去创建一张数据表 worker，建表语句如下：

耐心是一切聪明才智的基础。——柏拉图

file:///read/71/article/1846
file:///read/71/article/1852

从建表语句可以得知，MySQL 会为 worker 表创建两个索引 B+ 树：聚簇（主键）索引和普通（city、id）索引。

下面，我们可以对 worker 表进行如下的排序查询：

MySQL 对于排序过程会给每个线程分配一块内存，称之为 sort_buffer，注意，这里还并未区分排序类型。接下

来，我就去对上面的查询语句进行全字段排序的过程进行讲解说明：

MySQL 初始化 sort_buffer，并根据查询语句确定需要放入 type , name , salary 三个字段

从 city_idx 索引中找到第一个满足 city = '宿州市' 条件的主键

根据找到的主键回到聚簇索引中取出完整的数据记录，并把 type , name , salary 三个字段的值放入

sort_buffer 中

从 city_idx 索引中取出下一个记录的主键

重复步骤3和4，直到 city = '宿州市' 的条件不满足

对 sort_buffer 中的数据按照字段 name 做快速排序

按照排序结果取前100条返回给客户端

需要注意，“按照 name 排序” 的动作可能在内存中完成，也可能会借助临时文件使用外部排序完成，这完全取决于

排序所需的内存和 MySQL 参数 sort_buffer_size（也就是开辟 sort_buffer 内存的大小）。

1.2 rowid 排序

对于 “全字段排序” 算法来说，存在一个不可忽视的问题：如果查询需要返回很多字段，那么，sort_buffer 中需要

放入的数据也会很多。一旦超过了 sort_buffer_size 定义的阈值，就需要使用临时文件去做外排序，性能将会严重

降低。所以，如果单行数据很大，“全字段排序” 的方法并不好。

MySQL 当然也考虑到了这个问题，它定义了 max_length_for_sort_data 参数去控制用于排序的行数据的长度。这

个参数所表达的意思是：如果单行的数据长度超过了预定义的值，MySQL 就会认为单行太大，需要换一种排序算

法，即 “rowid 排序”。我们可以去看一看这个参数：

那么，假设查询的三个字段 type , name , salary 总长度超过了 max_length_for_sort_data 阈值，MySQL 将会采用

“rowid 排序” 算法。执行流程总结如下：

CREATE TABLE `worker` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT 'id',
 `type` char(64) NOT NULL DEFAULT '' COMMENT '员工类型',
 `name` char(64) NOT NULL DEFAULT '' COMMENT '姓名',
 `salary` bigint(20) unsigned DEFAULT '0' COMMENT '薪水',
 `province` char(64) NOT NULL DEFAULT '' COMMENT '省份',
 `city` char(64) NOT NULL DEFAULT '' COMMENT '城市',
 PRIMARY KEY (`id`),
 KEY `city_idx` (`city`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='员工表';

-- 注意到 WHERE 条件可以使用到 city_idx 索引
SELECT type, name, salary FROM worker WHERE city = '宿州市' ORDER BY name LIMIT 100;

mysql> SHOW VARIABLES LIKE 'max_length_for_sort_data';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| max_length_for_sort_data | 1024 |
+--------------------------+-------+
1 row in set (0.01 sec)

MySQL 初始化 sort_buffer，但是只会放入 name 和 id 两个字段（这也是称为 rowid 排序的原因）

从 city_idx 索引中找到第一个满足 city=‘宿州市’ 条件的主键

根据找到的主键回到聚簇索引中取出完整的数据记录，并把 name, id 两个字段的值放入 sort_buffer 中

从 city_idx 索引中取出下一个记录的主键

重复步骤 3 和 4，直到 city = ‘宿州市’ 的条件不满足

对 sort_buffer 中的数据按照字段 name 做快速排序

遍历排序结果，取前 100 条，并根据 id 再回到聚簇索引中取出 type , name , salary 三个字段返回给客户端

所以，可以知道，rowid 排序相比于全字段排序，除了基本的排序过程之外，还需要根据 id 再回到原表中将完整的

数据列值取出。

1.3 全字段与 rowid 排序的对比总结

其实，从以上对这两种排序算法的介绍可以知道：MySQL 依赖于内存空间是否足够去决定选择哪一种排序方式。

当然，我们也可以知道，“全字段排序” 的方式肯定是更优的。下面，我来对这两种排序方式进行对比总结：

“全字段排序” 是 MySQL 的首选，也体现了 MySQL 的设计思想：内存足够，就更多的利用内存，尽量减少磁

盘访问（这同样也对我们的程序设计有启发意义）

如果 MySQL 认为内存不够用，影响排序效率，则会采用 “rowid 排序”，但是会多出一次回表过程

2. ORDER BY 与索引的关系

索引不仅能够提高普通查询的性能，它当然也能够影响到排序，但是，ORDER BY 如何结合索引有时并不好理

解。所以，接下来，我们将以实例的形式分析各种关于 ORDER BY 的查询语句是否会使用到索引。以此来启发我

们对数据表、索引、查询方式的设计。

2.1 ORDER BY 使用索引的情况分析

在某些情况下，MySQL 可能会使用索引来满足一个 ORDER BY 子句，避免额外的排序性能消耗。但是，这建立

在你对业务需求足够理解的基础上，即能够预判会有怎样的查询，再去建立合适的索引。例如，对于之前的排序查

询：

由于当前的 worker 表只有 city 字段存在索引（忽略聚簇索引），所以，MySQL 不可避免的会对表扫描并排序。

但是，如果此时我们给 worker 表添加一个额外的索引：

此时，由于 city , name 这两个字段有一个联合索引存在，且 WHERE 子句之后的 city 条件是一个常量，所以，在

找到 city = '宿州市' 对应的记录之后，就可以按顺序从索引中返回前 100 条记录（需要再回到聚簇索引中取得完整

的记录），而不需要再去排序了。其实，针对当前的查询，我们还可以再做一次优化。给 worker 表添加如下索

引：

SELECT type, name, salary FROM worker WHERE city = '宿州市' ORDER BY name LIMIT 100;

mysql> ALTER TABLE `worker` ADD INDEX city_name_idx(`city`, `name`);
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE `worker` ADD INDEX city_nam_type_salary_idx(`city`, `name`, `type`, `salary`);
Query OK, 0 rows affected (0.14 sec)
Records: 0 Duplicates: 0 Warnings: 0

你一定也看出来了，这其实就是利用到了覆盖索引的特性。由于 city_nam_type_salary_idx 索引上的信息能够满足

查询要求，就不需要再回到聚簇索引上取数据。

下面，我们再来看两个排序查询 SQL 语句：

虽然第二条 SQL 会比第一条多查询出一个 id 字段，但是，在 MySQL 看来，它们是一模一样的，都会使用到

city_nam_type_salary_idx 索引（如果创建了这个索引）。这是因为：在 MySQL 中，不论是什么类型的索引，都

会包含主键。

最后，还需要去考虑 ORDER BY 对多字段的排序规则问题。默认情况下，如果不显示的指定 ORDER BY 的规

则，则 MySQL 使用的是 ASC，即升序。对于多字段排序的情况下，需要各自分别定义升序或降序。所以，如果想

要使用索引，ORDER BY 所有字段的排序规则必须是一致的。例如：

2.2 ORDER BY 不使用索引的情况分析

这里所说的 ORDER BY 不使用索引其实指的是需要对查询结果进行排序。首先，你肯定能想到的 “反面案例” 就是

多字段排序规则不一致的查询。例如：

另外，当 ORDER BY 字段使用函数时，优化器解析 ORDER BY 时也会放弃索引。例如：

当 ORDER BY 与 GROUP BY 一起使用时，如果它们有不同的表达式，即使有对应的索引，也不能使用。例如：

最后一种情况是，对于指定了排序索引长度的索引，索引不能够完全解析排序的顺序，仍然需要使用排序算法来对

结果进行排序。例如，我们在 name 字段上建立了索引 name(10)，而实际上 name 的长度是 64。那么，对于 OR

DER BY name 的情况也是不能够使用索引来直接完成查询的。

3. 如何去做 ORDER BY 查询的优化

MySQL 通过系统变量和系统表提供了对查询语句的执行跟踪，这类似于我们的应用日志。通过执行跟踪信息，我

们可以对影响 ORDER BY 执行的参数阈值进行调整，以达到优化查询的目的。

3.1 跟踪 ORDER BY 查询的执行过程

对于我们的 SQL 执行过程，除了基本的日志之外，MySQL 还提供了 “跟踪” 的功能。这个功能默认是关闭的，我

们需要的时候可以打开。如下所示：

SELECT type, name, salary FROM worker ORDER BY city, name LIMIT 100;
SELECT id, type, name, salary FROM worker ORDER BY city, name LIMIT 100;

SELECT id, type, name, salary FROM worker ORDER BY city, name LIMIT 100;
SELECT id, type, name, salary FROM worker ORDER BY city ASC, name ASC LIMIT 100;
SELECT id, type, name, salary FROM worker ORDER BY city DESC, name DESC LIMIT 100;

SELECT id, type, name, salary FROM worker ORDER BY city ASC, name DESC LIMIT 100;
SELECT id, type, name, salary FROM worker ORDER BY city DESC, name ASC LIMIT 100;

SELECT type, name, salary FROM worker WHERE city = '宿州市' ORDER BY LOWER(name) LIMIT 100;

SELECT type, name FROM worker WHERE city = '宿州市' GROUP BY type, name ORDER BY name LIMIT 100;

系统库 performance_schema 中的 session_status 表中记录了 InnoDB 读取的行记录数。这是一个非常有用的数

据，我们可以在执行一条 SQL 语句的前后获取到这个值，然后计算它们的差值，而这个差值就标识了 InnoDB 扫

描的记录数。首先，在执行查询之前，先把 “当前值” 记录下来。执行如下语句：

执行之后，你可以使用 SELECT @a 查看下这个值，我这里不再演示。记录下 “当前值” 之后，我们可以去执行查

询语句了。例如（可以考虑 fake 多一些数据到测试表中，也是为了更好的观测结果）：

此时，我们就可以看一看 MySQL 的跟踪结果信息。需要注意，由于跟踪信息的内容比较多，所以，我只截取了部

分结果信息。如下所示（包含注释信息）：

根据跟踪信息可以知道：查询语句在排序过程中使用了 24 个（number_of_tmp_files）临时文件。当内存不够时

（排序数据超过了 sort_buffer_size 设定的阈值），MySQL 会使用临时文件做外部排序，而外部排序一般使用归并

算法来完成。这也是效率低下的主要原因。

最后，我们再去获取 InnoDB 读取的行记录数，并把这个值保存在变量 b 中。同时，计算两次读取的差值，也就获

取了对于之前的查询 InnoDB 扫描的记录数。如下所示：

3.2 优化 ORDER BY 查询的建议

-- 打开 optimizer_trace， 且只对当前的会话有效
mysql> SET optimizer_trace = 'enabled=on';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT VARIABLE_VALUE INTO @a FROM performance_schema.session_status WHERE variable_name = 'Innodb_rows_read';
Query OK, 1 row affected (0.00 sec)

SELECT type, name, salary FROM worker WHERE city = '宿州市' ORDER BY name LIMIT 100;

mysql> SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G
......
-- 排序信息总结（如果使用到了索引，就不会有排序信息）
"filesort_summary": {
 -- 记录行数
 "rows": 121350,
 -- 参与排序的行数
 "examined_rows": 121350,
 -- 使用到的临时文件个数
 "number_of_tmp_files": 24,
 -- MySQL 为排序开辟的内存空间
 "sort_buffer_size": 73936,
 -- 使用 rowid 排序算法
 "sort_mode": "<sort_key, rowid>"
}
......

mysql> SELECT VARIABLE_VALUE INTO @b FROM performance_schema.session_status WHERE variable_name = 'Innodb_rows_read';
Query OK, 1 row affected (0.00 sec)

-- 获取 InnoDB 扫描的记录数，注意，结果完全看你当前表中的记录数
mysql> SELECT @b-@a;
+-------+
| @b-@a |
+-------+
| 121350|
+-------+
1 row in set (0.00 sec)


24 大数据量插入遇到瓶颈，我该
怎样做性能优化呢？ 

26 遇到慢查询问题，可以这样思
考与解决

优化 ORDER BY 查询的原因一定是它执行的比较慢，那么，为什么会慢，我们就可以通过以上讲解的跟踪过程来

确定。确定了瓶颈出现的原因，我们就可以去想办法优化了。下面，我来给出关于优化 ORDER BY 查询的一些建

议：

调低 max_length_for_sort_data 参数的值，控制 MySQL 排序选择算法的触发点

调大 sort_buffer_size 参数的值，理想情况下，这个值越大越好，使得排序过程只发生在内存中

根据业务需求（确定常用查询）创建合适的索引，最好的情况是可以使用覆盖索引

排序的字段不应该过多，复杂的查询会占据大量的时间，且通常很难做优化

4. 总结

ORDER BY 查询确实是有很多 “技巧” 的，这不仅仅是需要对它的执行原理非常了解，还需要熟悉你正在做的业务

需求。另外，虽然调整 MySQL 的一些参数可以起到优化查询的目的，但是，也同样需要考虑这会对其他查询或客

户端造成的影响。

5. 问题

你遇到过 ORDER BY 查询缓慢的问题吗 ？你是怎样做优化的呢 ？

调整 sort_buffer_size 参数的值可以优化 ORDER BY 查询，但是，应该调整到多少呢 ？

除了我这一节里提到的优化建议，你还能说出哪些 ？

6. 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：Sorting Rows

MySQL 官方文档：Server System Variables

MySQL 官方文档：ORDER BY Optimization

}

https://dev.mysql.com/doc/refman/5.7/en/sorting-rows.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/order-by-optimization.html

	1. ORDER BY 的执行过程
	1.1 全字段排序
	1.2 rowid 排序
	1.3 全字段与 rowid 排序的对比总结

	2. ORDER BY 与索引的关系
	2.1 ORDER BY 使用索引的情况分析
	2.2 ORDER BY 不使用索引的情况分析

	3. 如何去做 ORDER BY 查询的优化
	3.1 跟踪 ORDER BY 查询的执行过程
	3.2 优化 ORDER BY 查询的建议

	4. 总结
	5. 问题
	6. 参考资料

