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static const SYMBOL symbols[] = {
I
Insert new SQL keywords after that commentary (by alphabetical order):

{SYM("&&", AND_AND_SYM)},
{SYM("< LT,

{SYM("<=", LE)},

{SYM("<>", NE)},

{SYM("1=", NE)},
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SELECT type, name FROM worker;
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MYSQLlex. T, &A™ B 8 7% 0o AR «

int MYSQLIex(YYSTYPE *yylval, YYLTYPE “yylloc, THD *thd)
{

IMip HERAE T BT S iRE(E B

Lex_input_stream *lip= & thd->m_parser_state->m_lip;

int token;

/1 183 lex_one_token pAEUAS |/ Hr 4k g, B Token
token= lex_one_token(yylval, thd);
yylloc->cpp.start= lip->get_cpp_tok_start();
yylloc->raw start= lip->get_tok_start();

11 %F Token #EAT AW 7095
switch(token) {
case WITH:

return token;

}

M MYSQLlex ARG ATLAE H, @i lex_one_token sREEH] T /04 B, x5 BIE LS4 & token.
lex_one_token fXRL[FEREN: T sqlisql_lex.cc &, IRATTRE —F B HIPATILFE:

static int lex_one_token(YYSTYPE *yylval, THD “thd)
{
uchar c= 0;
bool comment_closed:;
int tokval, result_state;
uint length;
enum my_lex_states state;
Lex_input_stream *lip= & thd->m_parser_state->m_lip;
const CHARSET_INFO *cs= thd->charset();
IARAE T A8E S HTARSHL B &R
const my_lex_states “state_map= cs->state_maps->main_map;
const uchar *ident_map= cs->ident_map;

lip->yylval=yylval; // The global state

lip->start_token();
state=lip->next_state;
lip->next_state=MY_LEX OPERATOR_OR_IDENT;

I EF A PR AE AR state AR I HUE R Y E i B — A3, T4k lip P RE T —MRENER
for (5;)
{
switch (state) {
case MY_LEX_OPERATOR_OR_IDENT: // Next is operator or keyword
11 W14 state IR
case MY_LEX START: // Start of token
/I Skip starting whitespace
while(state_map|c= lip->yyPeek()] == MY_LEX_SKIP)

state_map TEXIIRILI & 56K T4 1K) ASCI 2 P )7 40 e DR A IR, 5 28 24 i) v 70 A (R RS 3EAT 4 SR vk
SEIR AT 4 Y1 Token. SXANFE I FZ TAEXN R for G, AT ARYERFR state A& (HUE R gL
WIS, 534k lip R AE T —MIREIIE R


https://github.com/mysql/mysql-server/blob/5.7/sql/sql_lex.cc

3. BRI

WRIGFEREDHTIIEE R, IEED s SARSEEERUN, AW R SQL A= ML MySQL MUE A, ZJR4E
B BRAEER o BTEL, TR MR T BT R

3.1 A AR A

TR NI LB SC 2 syntax analysis, fRJERIIUL, BRI EIE ST I Token 2 anfa[ 4 thoeHE 1) . MySQL
HFIEVE TR 2 Bison, Bison 2AR#E MySQL & SCHIEVE MU AT BIAENT . TBVRARNT LR L3228 ik
A PR, ISR RRES. BB . T, TA1GkRE— %6 SQL iEh):

SELECT type, name FROM worker WHERE salary > 2000 AND type ="A";
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MySQL &5 HT RS AL T sql/sql_yacc.yy 1, N, A% RE—ERZOMBEITLR.

/I SELECT &) I fEtir A H
select:
select_init
{
$$= NEW_PTN PT_select($1, SQLCOM_SELECT);
}

Il B3k 3 SELECT ety
select_init:
SELECT_SYM select_part2 opt_union_clause
{
$$= NEW_PTN PT_select_init2($1, $2, $3);
}
| '(" select_paren )" union_opt
{
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$$= NEW_PTN PT_select_init_parenthesis($2, $4);

select_part2:
11 f#Hr SELECT (#1514
select_options_and_item_list
/I f##T ORDER BY -4
opt_order_clause
I T LIMIT 4]
opt_limit_clause
Il f#HT SELECT 18 A)HH f 4t
opt_select_lock_type
{
$$= NEW_PTN PT_select_part2($1, NULL, NULL, NULL, NULL, NULL,
$2, $3, NULL, NULL, $4);
}
| select_options_and_item_list into opt_select_lock_type
{
$$= NEW_PTN PT_select_part2($1, $2, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, $3);
}
IR &M 74
| select_options_and_item_list /* #1 */

opt_into 1" #2%
from_clause [* #3*
opt_where_clause /" #4 %/
opt_group_clause /* #5%/
opt_having_clause I* #6 %/
opt_order_clause I* #7*/
opt_limit_clause [* #8*/
opt_procedure_analyse_clause /* #9 */
opt_into [*#10 */

opt_select_lock_type I #11*

/I FROM T-4], fi#thr %4
from_clause:
FROM table_reference_list { $$= $2; }

opt_from_clause:
/* empty */{ $$= NULL; }
| from_clause

I fERT RIS i)
table_reference_list:
join_table_list
{
$$= NEW_PTN PT_table reference_list($1);
}
| DUAL_SYM{ $$= NULL; }
/* oracle compatibility: oracle always requires FROM clause,
and DUAL is system table without fields.
Is "SELECT 1 FROM DUAL" any better than "SELECT 1" ?

Hmmm :) */

I f##T WHERE 74 (il =0
opt_where_clause:
* empty */ { $$= NULL; }
| WHERE expr
{
$$= new PTI_context<CTX_WHERE>(@$, $2);
}
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struct LEX: public Query_tables_list

{
friend bool lex_start(THD *thd);

SELECT_LEX_UNIT *unit; /< Outer-most query expression
/Il @todo: select_lex can be replaced with unit->first-select()
SELECT_LEX *select_lex; /lI< First query block

SELECT_LEX “all_selects_list; /lI< List of all query blocks
private:

/* current SELECT_LEX in parsing */

SELECT_LEX *m_current_select;

Il 1#4it SELECT xft+ 2 J5 %514

List<ltem> item_list;

I T A W R R A4 K

SQL_|_List<TABLE_LIST> table_list;

I F7fit A ) 41k

ltem *where;
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Flex (lexical analyser generator)
Understanding SQL Query Parsing
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