29 {REIE SQL StrEsatcMFRZEMANG ?

EEFATE : 2020-05-13 18:26:29

B = IR R + IERRRITS A + DRES1TE, —ZREEmE

WS “MySQL RG24 (K earh, JATATLAREE, #rdd2 MySQL EZEAH I — D EEA M. s T8
IR E AR, SEBL T RTIRE: WA BT AEIE M. FrEL, “BET” 234 as H S 2 Wt 7O X K DI RE i

1. IR Hr 4%

MR AR 2R P LR CRERT (LR, M TR SR (SQL BRI ETD . TBlEEEA MySQL &
Gih kIR B REENEM . TR ERPRIZOIEEZHT, BAVERERE T ER TR, ULRETIE
X

(RS SRS g

Hoz, MTRETRMS, RINCLTRIEE 7. B MySQL ks i BEr—L% “fia”, d SQL HikmE
AR FATATELE MySQL % (sqlllex.h) e Eprf RSB) 52 X -

https://github.com/mysql/mysql-server/blob/5.7/sql/lex.h
file:///read/71/article/1943
file:///read/71/article/1951

static const SYMBOL symbols[] = {
I
Insert new SQL keywords after that commentary (by alphabetical order):

{SYM("&&", AND_AND_SYM)},
{SYM("< LT,

{SYM("<=", LE)},

{SYM("<>", NE)},

{SYM("1=", NE)},

MySQL BUEF TR 3Ry 7 BEREI A A4 ANGE 5 R i R, XA B U 2l S vk AE 2 EC i 7o R
Ja, ERITE, KT AR T A A A T 1 E A

1.2 7 hras i TAE L 72

2 MySQL) “EHZAr” B ahnt, EiEaESEAR &S GEEXEAFR TN o ek
XFRATH SQL BRI PAT I AP 1 AT -

o AT SQL BRI IZI e MM ME KT, X P EE TR AL PR E” i
RpE TSR T
o BT X PR TN EERLE, 2% SQL EAIMEER K BT RAMEER, X
T ES AT RE P R R AR T
SQL EAIFENTE TG B I0VENE, ERIEA TP AL R gRREE S AT PR A X . R, IER DUV EEZ
ZR R T AL AL B, BRRRIE 2 MySQL A 55 45 1 Bl i o

2. WL 5B

XFT Linux ki, a7 A — g i Flex 5 Bison 58pff. T4 T MySQL kit HBEIMFMAEME, B ok
BT ARREA IO 7y . R, AT XA RIEE NS X BIERHITER) . HRRERKE TR
o

2.1 @k AT T

WA AT BRI 9302 lexical analysis, JH 2HEIS N “lex’s WA T %O TAEM 2 M AN — M H R
SR, FRZ 9 Token. ZJm, =L Token il 7 Jy ot v MARGHE 7. 26007, st BA Tk Al
P& AR K SQL i H):

SELECT type, name FROM worker;

FELFEREA T EN 2)5, X% SQL BRI “7r#]” 54 Token, Mokt y, =MER#T. TR
B

P ST S S PSS S | S
SELECT type name FROM worker

A A TR IE N A A IR R CRA I iR) ERrRIEIIIE SO 7478 (SQLKA]) H [i
At A, ARRAF LGS B, IEWARPTIL, AR UE, T I TAE R R LB 1.

2.2 WL AT IR

3% 2 M B k% 0 R S AL T sql/sql_lex.ce e ERE, TEXRERRA) , WES I EEN DR ER
MYSQLlex. T, &A™ B 8 7% 0o AR «

int MYSQLIex(YYSTYPE *yylval, YYLTYPE “yylloc, THD *thd)
{

IMip HERAE T BT S iRE(E B

Lex_input_stream *lip= & thd->m_parser_state->m_lip;

int token;

/1 183 lex_one_token pAEUAS |/ Hr 4k g, B Token
token= lex_one_token(yylval, thd);
yylloc->cpp.start= lip->get_cpp_tok_start();
yylloc->raw start= lip->get_tok_start();

11 %F Token #EAT AW 7095
switch(token) {
case WITH:

return token;

}

M MYSQLlex ARG ATLAE H, @i lex_one_token sREEH] T /04 B, x5 BIE LS4 & token.
lex_one_token fXRL[FEREN: T sqlisql_lex.cc &, IRATTRE —F B HIPATILFE:

static int lex_one_token(YYSTYPE *yylval, THD “thd)
{
uchar c= 0;
bool comment_closed:;
int tokval, result_state;
uint length;
enum my_lex_states state;
Lex_input_stream *lip= & thd->m_parser_state->m_lip;
const CHARSET_INFO *cs= thd->charset();
IARAE T A8E S HTARSHL B &R
const my_lex_states “state_map= cs->state_maps->main_map;
const uchar *ident_map= cs->ident_map;

lip->yylval=yylval; // The global state

lip->start_token();
state=lip->next_state;
lip->next_state=MY_LEX OPERATOR_OR_IDENT;

I EF A PR AE AR state AR I HUE R Y E i B — A3, T4k lip P RE T —MRENER
for (5;)
{
switch (state) {
case MY_LEX_OPERATOR_OR_IDENT: // Next is operator or keyword
11 W14 state IR
case MY_LEX START: // Start of token
/I Skip starting whitespace
while(state_map|c= lip->yyPeek()] == MY_LEX_SKIP)

state_map TEXIIRILI & 56K T4 1K) ASCI 2 P)7 40 e DR A IR, 5 28 24 i) v 70 A (R RS 3EAT 4 SR vk
SEIR AT 4 Y1 Token. SXANFE I FZ TAEXN R for G, AT ARYERFR state A& (HUE R gL
WIS, 534k lip R AE T —MIREIIE R

https://github.com/mysql/mysql-server/blob/5.7/sql/sql_lex.cc

3. BRI

WRIGFEREDHTIIEE R, IEED s SARSEEERUN, AW R SQL A= ML MySQL MUE A, ZJR4E
B BRAEER o BTEL, TR MR T BT R

3.1 A AR A

TR NI LB SC 2 syntax analysis, fRJERIIUL, BRI EIE ST I Token 2 anfa[4 thoeHE 1) . MySQL
HFIEVE TR 2 Bison, Bison 2AR#E MySQL & SCHIEVE MU AT BIAENT . TBVRARNT LR L3228 ik
A PR, ISR RRES. BB . T, TA1GkRE— %6 SQL iEh):

SELECT type, name FROM worker WHERE salary > 2000 AND type ="A";

WFHE M NIEE T IEN (CSEBR EREVE TR HD AT AR RN B PR BTEE R -

Fields - Tables F4
A | l

e nome vorker A
> X

salary 2000 type A

FLAE W, TEER RIS AT R a2 SQL A KA Token, TiIANF B AR T AR Token 38
Ao MR A B ER 2 J5 . SQL 31T 28 1) CAE At B AR SE B 1 o

3.2 VA A R IR A R

AR A R IR U LS T g AR VR, X0 T RZB M S, R ERAER . M Bison SR IEEN
JUFRCT “MFprE”, HEMIERETEREER—, FEM T —REfm 8. Fril, AxERi, £ TR,
ERRAREIFA .

MySQL &5 HT RS AL T sql/sql_yacc.yy 1, N, A% RE—ERZOMBEITLR.

/I SELECT &) I fEtir A H
select:
select_init
{
$$= NEW_PTN PT_select($1, SQLCOM_SELECT);
}

Il B3k 3 SELECT ety
select_init:
SELECT_SYM select_part2 opt_union_clause
{
$$= NEW_PTN PT_select_init2($1, $2, $3);
}
| '(" select_paren)" union_opt
{

https://github.com/mysql/mysql-server/blob/5.7/sql/sql_yacc.yy

15

$$= NEW_PTN PT_select_init_parenthesis($2, $4);

select_part2:
11 f#Hr SELECT (#1514
select_options_and_item_list
/I f##T ORDER BY -4
opt_order_clause
I T LIMIT 4]
opt_limit_clause
Il f#HT SELECT 18 A)HH f 4t
opt_select_lock_type
{
$$= NEW_PTN PT_select_part2($1, NULL, NULL, NULL, NULL, NULL,
$2, $3, NULL, NULL, $4);
}
| select_options_and_item_list into opt_select_lock_type
{
$$= NEW_PTN PT_select_part2($1, $2, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, $3);
}
IR &M 74
| select_options_and_item_list /* #1 */

opt_into 1" #2%
from_clause [* #3*
opt_where_clause /" #4 %/
opt_group_clause /* #5%/
opt_having_clause I* #6 %/
opt_order_clause I* #7*/
opt_limit_clause [* #8*/
opt_procedure_analyse_clause /* #9 */
opt_into [*#10 */

opt_select_lock_type I #11*

/I FROM T-4], fi#thr %4
from_clause:
FROM table_reference_list { $$= $2; }

opt_from_clause:
/* empty */{ $$= NULL; }
| from_clause

I fERT RIS i)
table_reference_list:
join_table_list
{
$$= NEW_PTN PT_table reference_list($1);
}
| DUAL_SYM{ $$= NULL; }
/* oracle compatibility: oracle always requires FROM clause,
and DUAL is system table without fields.
Is "SELECT 1 FROM DUAL" any better than "SELECT 1" ?

Hmmm :) */

I f##T WHERE 74 (il =0
opt_where_clause:
* empty */ { $$= NULL; }
| WHERE expr
{
$$= new PTI_context<CTX_WHERE>(@$, $2);
}

i Bison SERGEVAMNT)R, SREHTA RAEMKBERA MR struct LEX o LEX gi#ffoE AE

sql/sql_lex.h /1, JREL LI B s

struct LEX: public Query_tables_list

{
friend bool lex_start(THD *thd);

SELECT_LEX_UNIT *unit; /< Outer-most query expression
/Il @todo: select_lex can be replaced with unit->first-select()
SELECT_LEX *select_lex; /lI< First query block

SELECT_LEX “all_selects_list; /lI< List of all query blocks
private:

/* current SELECT_LEX in parsing */

SELECT_LEX *m_current_select;

Il 1#4it SELECT xft+ 2 J5 %514

List<ltem> item_list;

I T A W R R A4 K

SQL_|_List<TABLE_LIST> table_list;

I F7fit A) 41k

ltem *where;

L M SQL iER) 53T Token, FExt Token #E4T 7 9025

TEE T X 2573 2K 1) Token 4% 18— € FIAL NI

AL TR, IF A RAEE] LEX BdRgiih. 2Jn, LEX S4ksm TLsERIfiiess, Moiuas f R B

ol AT IR

4. 045

SQL 7 as ISl GAVE T AER M) ROV E R, HIEZHE: KEZHONE, 1R 7 B RITE R B i # 1
Hfta 7 ge ol SQL BT IR Token, DR EATEAT #2288, IR NS I 1R X L
Token 141 (i) p—HUEEN, MEEFAE 7. fa, WAZBREEREE MySQL FscIliig, Aase—fF

R, I R R SR TR
5.] &t

iR SQL BHIEA), (RALILE tHAMHT B0 TR A2 2

PUMR TAE &2 SQL Bl e 8], S0 e T Token 47, JRHLIRGEER 2

6. 2% ikl

(Eitkge MySQL (BB =f0)
LR parser
Flex (lexical analyser generator)
Understanding SQL Query Parsing

SQL Parser

https://github.com/mysql/mysql-server/blob/5.7/sql/sql_lex.h
https://en.wikipedia.org/wiki/LR_parser
https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)
https://www.red-gate.com/simple-talk/sql/oracle/understanding-sql-query-parsing-part-1/
https://sqldep.com/sql-parser/

30 SQL EEHfIERASTIEEE L
< 28 HHRANRMySQLIERSZE SRR ?

	1. 初识分析器
	1.1 关键字和非关键字
	1.2 分析器的工作过程

	2. 词法分析
	2.1 词法分析执行过程
	2.2 词法分析源码解读

	3. 语法分析
	3.1 生成语法树
	3.2 语法树生成源码解读

	4. 总结
	5. 问题
	6. 参考资料

