
更新时间：2020-05-21 16:16:13

33 为大型电商平台设计高可用数据库系统

电商业务可能是除了工作之外，我们接触最多的业务系统了，例如：京东、天猫、淘宝等等。浏览商品、加入购物

车、购买结算等等都是电商平台中最基本的业务，那么，如果让你设计一个高可用的电商业务系统（数据表），你

会怎么做呢 ？当然，你不需要考虑的 “非常全面”，毕竟业务系统都是在不断迭代（升级）中的，不要总想着一次性

把 “所有的东西” 都设计出来。

1. 电商业务概述

可以肯定的说，电商平台是日常工作、生活中遇到的比较复杂的业务系统，这体现在它面向的是广大的用户群体

（用户应用由于面对各种各样的人群，自然也就会有各种各样的需求）。在实际的做设计之前，一定要仔细斟酌这

里面的业务思想、业务需求，最好当然是能够 “预见未来”，以使得在不改变数据表结构的前提下做升级迭代。

1.1 电商平台通常都定义了哪些业务

大家基本上对电商平台（你应该有过网购的经历）都不会很陌生，所以，我直接进入主题。我们当前要设计的电商

平台，包含以下的几个功能点（你当然可以在此基础上做扩充，并完善它们所需要的表设计）：

用户相关信息

用户基本信息，例如：姓名、年龄、邮箱、电话（用户的基本信息收集的越详细越好，思考下这是为什么

劳动是一切知识的源泉。——陶铸

file:///read/71/article/1955
file:///read/71/article/1963

呢 ？）

用户收货地址信息，例如：省、市、收件人、电话等等（可以做区县、镇、乡等等级别的扩展）

商品相关信息

商品基本信息，例如：商品名、商品类型（食品、家居、生鲜等等）、商品价格、商品库存等等

商品厂商信息，例如：厂商名称、厂商 logo、厂商审核状态等等

用户与商品之间的 “互动” 信息

收藏关注，用户可以收藏商品，也可以收藏厂商（大部分电商系统会 “重命名” 为店铺）

购物车，用户可以把自己想要购买的商品加入到购物车中，同时可以指定个数

购买订单，用户可以购买商品，并记录支付信息

评价反馈，对于已完成（这是前提条件）的订单，用户可以发表对商品的评论

优惠空间

折扣活动，自定义开始和结束时间，对应于某种商品采取打折促销

可以看到，我们当前定义的功能点足够支撑一个简单电商平台的运营了，接下来，就需要根据这里提出的业务需求

去设计数据表。另外，需要知道，对于绝大多数的业务系统而言，数据表是最难完成的工作（因为业务基本都是对

表的 CRUD，而这些通常就是简单的 if、else、for 逻辑代码）。

1.2 设计电商业务数据表应该注意些什么

其实，设计 MySQL 表需要注意的地方不仅仅是针对于 “某一个” 业务系统，这些建议或者意见放在任意一个系统中

基本（肯定是会有一些特殊的场景需要有特殊的手段去应对）都是成立的。下面，我将总结一些表设计的注意事

项：

除非是数据报表，否则，每张表都需要定义主键，且最好是自增的

主键最好使用 bigint 类型，以便业务膨胀

谨慎使用外键，除非主表与母表 “都不大”

对于可能会增加选项的枚举不要使用 enum 类型

所有的字段都应该是 NOT NULL 的，且最好定义默认值

谨慎使用 TEXT、BLOB 等大数据类型

单张表的数据列不应该太多，最好不要超过50个（不具有特殊含义）

单张表的索引个数不应该太多，最好不要超过5个

选择 “足够用” 的字段类型就可以，不要浪费存储空间

不要偷懒，表和列都要给出注释信息，否则，只能去代码中理解它的含义

选择合适的字符集，无 emoji 使用 utf8，有 emoji 使用 utf8mb4，但是肯定不建议使用 emoji

时间字段选择 timestamp 或 datetime 都可以

与用户相关的数据表一定要涵盖 user_id 逻辑外键

库名、表名、字段名都应该是小写

在工作、学习中，你会遇到各种各样的问题，自然也就会有一些自己的见解和总结，如果能对我这里的 “注意事项”

进行一些补充（当然，也可以提出一些意见和建议），那就最好不过了。

2. 电商业务表设计

理解了电商的业务思想和注意事项，我们就可以去着手设计数据表了。这里，我把业务中所有的数据表分为两类：

字典表和业务表。字典表是与具体的业务无关的，例如地域字典、支付方式字典等等；业务表则是与具体的业务系

统强关联的。

由于电商业务是一个独立的系统，我们最好单独创建一个库用于存储它的所有数据表。如下所示，创建

e_commerce 库：

2.1 字典表设计

我一共设计了三张字典表：地域字典表、支付方式字典表、商品分类字典表。对于字典表来说，它们是通用的，即

可以把它们应用在其他的业务系统中。首先，我们先去创建 “地域字典表”，建表语句如下：

从表设计和注释中可以看出，我们的 “地域字典” 包含省和市，这基本已经够用了。如果想要 “更深” 的层次，可以

自行扩展到区县、镇、乡等等。需要注意， district_id 这个字段可以唯一的标识一个城市，它的值可以使用代码生

成，也可以人为指定。

“支付方式” 指的是用户在订单中选择的结算方式，常见的有：微信支付、支付宝支付、银联支付（中国银行、建设

银行）等等。把这些支付方式硬编码在业务代码中肯定不会是比较好的选择，所以，我们需要一张 “支付方式字典

表”。

这张表非常简单，没有额外多余的字段（需要的话可以自行填充）。与之类似，每一种商品也都会（至少）属于一

个分类，例如：食品、家居、生鲜、酒水等等。我们也需要为此创建一张 “商品分类字典表”。

-- 创建数据库 e_commerce
CREATE DATABASE IF NOT EXISTS `e_commerce`;

-- 地域字典表
CREATE TABLE IF NOT EXISTS `e_commerce`.`district_dict` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '记录id, 主键, 自增',
 `district_id` int(11) NOT NULL COMMENT '地域 id',
 `parent_district_id` int(11) NOT NULL COMMENT '父地区关联, 如果是一级区域, 父地区 id 为0',
 `district_name` varchar(48) NOT NULL COMMENT '地区名称',
 `district_level` tinyint(4) NOT NULL COMMENT '区域层次级别: 0是省; 1是市',
 PRIMARY KEY (`id`),
 UNIQUE KEY `district_id_idx` (`district_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='地域字典表';

-- 支付方式字典表
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_payment_type` (
 `id` tinyint(4) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `payment_method` varchar(64) NOT NULL DEFAULT '' COMMENT '支付方式',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='支付方式字典表';

-- 商品分类字典表
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_goods_type` (
 `id` tinyint(4) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `goods_type` varchar(64) NOT NULL DEFAULT '' COMMENT '商品类型',
 `remark` varchar(200) NOT NULL DEFAULT '' COMMENT '其他说明',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='商品分类字典表';

字典表当然是为业务表服务的，例如：对于地域信息而言，业务中可能会有多处场景需要设置。在没有 “地域字典

表” 之前，只能重复填充所有的地域信息。同时，字典表与业务也并不是绑定关系，它们可以应用于任何其他业务

中。

2.2 业务表设计

对于每一个业务系统而言，用户表都是必不可少的基本表。这里我先给出 “用户表” 的建表语句，之后再对它进行解

释说明。如下所示：

可以看到，用户表非常 “详细”，它包含的数据列非常多。之所以需要获取 “如此多的” 用户信息，是为了可以对用户

进行分析，并使用 “推荐系统” 给用户推荐商品或促销信息。这里需要特别注意的是 last_login_time 和 expire_time

字段，前者代表上一次访问系统的时间；而后者代表用户多久没有登录系统会被暂停使用。

用户注册之后，可以创建收货地址，所以，我们需要一个 “收货地址表”。建表语句如下：

其中， district_id 则直接引用了 district_dict 字典表中的 district_id 字段。另外，需要注意，不应该给 user_id 创

建唯一索引，因为一个用户可以创建多个收货地址。

电商平台当然可以上架很多 “商品”，而这些商品一定会属于某一个生产厂商或者叫店铺。所以，为了 “上架” 商品，

我们需要两张表：商品生产厂商信息表、商品表。“商品生产厂商信息表” 比较简单，只需要记录厂商的基本信息就

可以了。建表语句如下所示：

-- 用户表
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_user` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '用户 id',
 `user_name` varchar(128) NOT NULL DEFAULT ' ' COMMENT '用户名',
 `user_age` tinyint(4) NOT NULL DEFAULT '0' COMMENT '用户年龄',
 `user_status` enum('normal','paused','deleted') NOT NULL DEFAULT 'normal' COMMENT '用户状态: normal-正常, paused-暂停/锁定, deleted-删除',
 `user_type` varchar(20) NOT NULL DEFAULT 'normal' COMMENT '用户类型: normal-普通用户, superadmin-超管, admin-普通管理员',
 `user_real_name` varchar(50) NOT NULL DEFAULT '' COMMENT '用户真实姓名',
 `user_email` varchar(100) NOT NULL DEFAULT '' COMMENT '用户邮箱',
 `user_mobile` varchar(20) NOT NULL DEFAULT '' COMMENT '用户手机号',
 `user_company` varchar(50) NOT NULL DEFAULT '' COMMENT '用户公司',
 `user_department` varchar(45) NOT NULL DEFAULT '' COMMENT '用户部门',
 `user_duty` varchar(100) NOT NULL DEFAULT '' COMMENT '用户具体职责',
 `remark` varchar(200) NOT NULL DEFAULT '' COMMENT '其他说明',
 `last_login_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '上次登录时间',
 `expire_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '过期时间(默认一年)',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`id`),
 UNIQUE KEY `user_id_idx` (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户信息表';

-- 收货地址
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_address` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '用户 id',
 `district_id` int(11) NOT NULL DEFAULT '0' COMMENT '地域 id',
 `detailed` varchar(200) NOT NULL DEFAULT '' COMMENT '详细的门牌地址',
 `name` varchar(128) NOT NULL DEFAULT ' ' COMMENT '收件人',
 `mobile` varchar(20) NOT NULL DEFAULT '' COMMENT '手机号',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`id`),
 KEY `user_id_idx` (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户地址表';

接下来，就可以去创建商品表了（它会引用到两张表：e_goods_type、e_company）：

注意到，商品表是分区表，这是因为它是电商平台的核心业务表，可能会非常大。我这里以 goods_type 作为（哈

希）分区条件，一共将数据分散到16个分区中。同时，也正是由于 goods_type 是分区条件，它必须出现在主键

中。

看到喜欢的商品或店铺我们可以收藏下来，这种功能叫做 “收藏关注”。由于要保存这些收藏记录，当然也就需要一

张数据表。建表语句如下：

需要注意，这张表既可以存储关注的店铺，也可以存储关注的商品，我这里使用了一个枚举类型的 attention_type

来进行区分。同时，还设计了一个 “取关（deleted）” 的字段，即使用户取关，也要记录下他曾经关注过。

购物车与 “收藏关注” 是非常类似的概念，它用于方便用户下单购买商品（同时购买很多商品）。购物车表也是比较

简单的，记录用户、商品、个数就可以了，建表语句如下：

-- 商品厂商信息
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_company` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `company_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '商品生产厂商 id',
 `company_name` varchar(64) NOT NULL DEFAULT '' COMMENT '商品生产厂商名称',
 `company_logo_url` varchar(1024) NOT NULL DEFAULT '' COMMENT '商品生产厂商 logo 地址',
 `company_audit` enum('review', 'approve','reject') NOT NULL DEFAULT 'review' COMMENT '审核状态: review-审核中, approve-通过, reject-拒绝',
 `remark` varchar(200) NOT NULL DEFAULT '' COMMENT '厂商说明',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`id`),
 UNIQUE KEY `company_id_idx` (`company_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='商品生产厂商信息表';

-- 商品表
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_goods` (
 `goods_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '商品 id',
 `goods_name` varchar(64) NOT NULL DEFAULT '' COMMENT '商品名称',
 `goods_type` int(11) NOT NULL DEFAULT '0' COMMENT '商品分类',
 `goods_price` decimal(10,4) NOT NULL COMMENT '商品价格, 最多支持四位小数',
 `goods_volume` bigint(20) NOT NULL DEFAULT '0' COMMENT '商品供应量',
 `goods_count` bigint(20) NOT NULL DEFAULT '0' COMMENT '商品库存',
 `goods_icon_url` varchar(1024) NOT NULL DEFAULT '' COMMENT '商品图标地址',
 `landing_page_url` varchar(1024) NOT NULL DEFAULT '' COMMENT '商品信息落地页(详细信息页面)',
 `goods_company_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '商品生产厂商 id',
 `remark` varchar(200) NOT NULL DEFAULT '' COMMENT '其他说明',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`goods_id`, `goods_type`),
 KEY `goods_company_id_idx` (`goods_company_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='商品表' PARTITION BY HASH(goods_type) PARTITIONS 16;

-- 收藏关注表
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_attention` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '用户 id',
 `attention_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关注的商品或厂商的 id',
 `attention_type` enum('goods', 'company') NOT NULL DEFAULT 'goods' COMMENT '关注类型: 商品或厂商',
 `deleted` enum('normal', 'deleted') NOT NULL DEFAULT 'normal' COMMENT '状态: normal-正常, deleted-删除(取关)',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`id`),
 KEY `user_id_idx` (`user_id`),
 UNIQUE KEY `attention_id_type_idx` (`attention_id`, `attention_type`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='收藏关注表';

很多店铺或商品会在节假日做促销活动，会有一定的打折优惠，这种业务场景叫做 “活动”。但是，活动的形式 “五

花八门”，几乎每个电商平台都不一样。所以，我这里设计一个比较简单的 “活动表” 来做示例说明，只是标记了在

某个时间范围内，某种商品会有折扣。建表语句如下：

有了用户、商品、活动等等基本的业务表，我们就可以下单去购买商品了，即需要一张订单表。通常，订单表都会

设计的非常复杂，包含的信息非常多，主要原因是它与 “钱” 相关（当然，除了数据表记录，业务日志也是少不了

的）。订单表建表语句如下：

-- 购物车
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_shopping_cart` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '用户 id',
 `goods_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '商品 id',
 `goods_count` int(11) NOT NULL DEFAULT '0' COMMENT '加入购物车个数',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`id`),
 KEY `user_id_idx` (`user_id`),
 KEY `goods_id_idx` (`goods_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='购物车表';

-- 活动表
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_activity` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `activity_name` varchar(128) NOT NULL DEFAULT '' COMMENT '活动名称',
 `start_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '活动开始时间',
 `end_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '活动结束时间',
 `audit_status` enum('review', 'approve','reject') NOT NULL DEFAULT 'review' COMMENT '审批状态: review-审核中, approve-通过, reject-拒绝',
 `audit_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '审批时间',
 `audit_comment` varchar(256) NOT NULL DEFAULT '' COMMENT '审批批注',
 `audit_by_user` bigint(20) NOT NULL DEFAULT '0' COMMENT '审批人',
 `deleted` enum('normal', 'deleted') NOT NULL DEFAULT 'normal' COMMENT '活动状态: normal-正常, deleted-删除',
 `goods_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '商品 id',
 `goods_discount` decimal(10,4) NOT NULL COMMENT '商品折扣, 最多支持四位小数',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 `create_by` bigint(20) NOT NULL DEFAULT '0' COMMENT '创建用户 id',
 `update_by` bigint(20) NOT NULL DEFAULT '0' COMMENT '修改用户 id',
 PRIMARY KEY (`id`),
 KEY `goods_id_idx` (`goods_id`),
 UNIQUE KEY `activity_name_idx` (`activity_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='活动表';

关于订单表，需要注意这样几个地方：

user_id 是 e_user 表的逻辑外键

goods_id 是 e_goods 表的逻辑外键

order_payment_type 是 e_payment_type 表的逻辑外键

activity_id 是 e_activity 表的逻辑外键

address_id 是 e_address 表的逻辑外键

同时，需要注意这张表的 order_status 字段，它是枚举类型，其中有个选项是 timeout，代表的是：用户创建了订

单，在一定时间（例如半个小时、一个小时等等）内没有完成支付，这个订单就算做超时不可用了。

好的，现在只剩下最后一张表了：评价反馈表。这张表也是比较简单的，它需要关联用户表和订单表，且只能是

“已完成” 的订单才可以做评价。建表语句如下：

设计数据表一定是在深入理解业务思想基础之上的，这是最核心也是最难的开发过程。这不仅仅需要你足够理解

MySQL，还需要你有足够的经验，毕竟 “规则” 并不一定适用所有的场景，要讲求灵活应变。

3. 不适用 MySQL 的存储业务

-- 订单表
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_order` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `order_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '订单 id',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '用户 id',
 `goods_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '商品 id',
 `goods_count` int(11) NOT NULL DEFAULT '0' COMMENT '商品个数',
 `order_price` decimal(10,4) NOT NULL COMMENT '订单价格, 最多支持四位小数',
 `order_status` enum('init', 'waiting', 'timeout','completed') NOT NULL DEFAULT 'init' COMMENT '订单状态: init-初始化, waiting-等待付款, timeout-超时,
 completed-已完成',
 `order_payment_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '付款方式',
 `activity_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '参与的活动 id',
 `address_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '用户地址 id',
 `remark` varchar(200) NOT NULL DEFAULT '' COMMENT '其他说明(折扣、活动等等说明)',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`id`),
 KEY `order_id_idx` (`order_id`),
 KEY `user_id_idx` (`user_id`),
 KEY `goods_id_idx` (`goods_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='订单表';

-- 评价反馈表
CREATE TABLE IF NOT EXISTS `e_commerce`.`e_feedback` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '用户 id',
 `order_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '订单 id',
 `star_level` tinyint(4) NOT NULL DEFAULT '0' COMMENT '星级',
 `content` varchar(200) NOT NULL DEFAULT '' COMMENT '评价内容',
 `pic_url` varchar(1024) NOT NULL DEFAULT '' COMMENT '晒图地址',
 `remark` varchar(200) NOT NULL DEFAULT '' COMMENT '其他说明(折扣、活动等等说明)',
 `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '创建时间',
 `update_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`id`),
 KEY `user_id_idx` (`user_id`),
 KEY `order_id_idx` (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='评价反馈表';

不一定所有的存储业务都需要使用 MySQL，毕竟 MySQL 也会有很多限制。有些场景下，前期使用 MySQL 比较

“顺手”，但是，逐渐地性能越来越差。此时，再去做技术选型、数据迁移等等都会浪费大量的时间和精力。所以，

提前做好准备，知道哪些场景可以使用 MySQL，哪些场景又不能使用 MySQL。

3.1 涉及到存储，为什么不用 MySQL

我们应该知道，“大数据量” 存储会让 MySQL 的读写性能急剧下降。虽然有分区表、分库分表等等技术方案，但无

疑都是非常麻烦且难以维护的。所以，对于数据膨胀快速的业务场景，MySQL 几乎是不适用的。

如果有一些数据，经常需要做插入和删除操作，那么，也并不适合使用 MySQL 存储。虽然可以对数据做标记删除

（设计一个 deleted 字段即可），但是，大量的无用数据会浪费很多存储空间。

3.2 场景举例说明

报表型数据是 “大数据量” 的典型代表，通常情况下，电商平台每天需要入库的报表数据在5万行量级，随着业务发

展，数据量大概率会进一步膨胀。所以，对于这类业务场景，最好是使用分布式数据库或报表型数据库存储，例

如：HBase、Palo 等等。

“浏览记录” 也是电商平台的常见业务需求，但是由于这类数据随着时间跨度的增长，价值也会相应降低。所以，通

常会以时间单位或数字单位去做保留，例如：近一个月的浏览记录、近100条浏览记录。如果使用 MySQL 来存

储，虽然可以应用 WHERE 或 LIMIT 子句对结果进行限定，但是会浪费大量的存储空间。所以，对于这种类似的

需求，使用 Redis 这样的缓存系统是更好的。

4. 总结

对于业务系统的表设计来说，过程都是类似的：首先理清楚业务需求是什么，即需要做什么；接着梳理各个需求之

间的关联关系（就像订单与商品一样），即怎样去做；最后再去书写表的创建语句，并验证是否符合要求。所以，

表设计的是否合理，除了日常的学习之外，更多的还是经验的积累。

5. 问题

除了当前的业务需求设计，你还能做怎样的扩展呢 ？

随着业务发展，订单表会越来越大，你会怎么解决这个问题呢 ？

对于目前的数据表设计，你觉得合理吗 ？如果不合理，又为什么呢 ？

6. 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：Data Types

MySQL 官方文档：Optimization

MySQL 官方文档：Character Sets and Collations in MySQL

}

https://dev.mysql.com/doc/refman/5.7/en/data-types.html
https://dev.mysql.com/doc/refman/5.7/en/optimization.html
https://dev.mysql.com/doc/refman/5.7/en/charset-mysql.html

 32 一起探究下事务的实现原理吧 
34 为慕课网设计高可用数据库系

统

	1. 电商业务概述
	1.1 电商平台通常都定义了哪些业务
	1.2 设计电商业务数据表应该注意些什么

	2. 电商业务表设计
	2.1 字典表设计
	2.2 业务表设计

	3. 不适用 MySQL 的存储业务
	3.1 涉及到存储，为什么不用 MySQL
	3.2 场景举例说明

	4. 总结
	5. 问题
	6. 参考资料

