
在 Java 中有多种方式可以创建对象，总结起来主要有下面的 4 种方式：

正常创建。通过 new 操作符
反射创建。调用 Class 或 java.lang.reflect.Constructor 的 newInstance()方法
克隆创建。调用现有对象的 clone()方法
发序列化。调用 java.io.ObjectInputStream 的 getObject()方法反序列化
Java 对象的创建方式是其语法明确规定，用户不可能从外部改变的。本文仍然要使用上面

的方式来创建对象，所以本文只能说是构建对象，而非创建对象也。

假设有这样一个场景，现在要构建一个大型的对象，这个对象包含许多个参数的对象，有

些参数有些是必填的，有些则是选填的。那么如何构建优雅、安全地构建这个对象呢？

单一构造函数
通常，我们第一反应能想到的就是单一构造函数方式。直接 new 的方式构建，通过构造函

数来传递参数，见下面的代码：

/***
* 单一构造函数
*/
public class Person {

 // 姓名（必填）
 private String name;

 // 年龄（必填）
 private int age;

 // 身高（选填）
 private int height;

 // 毕业学校（选填）
 private String school;

 // 爱好（选填）
 private String hobby;

 public Person(String name, int age, int height, String school, String hobby) {
 this.name = name;
 this.age = age;
 this.height = height;
 this.school = school;
 this.hobby = hobby;
 }
}

上面的构建方式有下面的缺点：

有些参数是可以选填的（如 height, school），在构建 Person 的时候必须要传入可能并不需

要的参数。
现在上面才 5 个参数，构造函数就已经非常长了。如果是 20 个参数，构造函数都可以直接

上天了！
构建的这样的对象非常容易出错。客户端必须要对照 Javadoc 或者参数名来讲实参传入对

应的位置。如果参数都是 String 类型的，一旦传错参数，编译是不会报错的，但是运行结

果却是错误的。
多构造函数
对于第 1 个问题，我们可以通过构造函数重载来解决。见下面的代码：

/***
* 多构造函数
*/
public class Person {

 // 姓名（必填）
 private String name;

 // 年龄（必填）
 private int age;

 // 身高（选填）
 private int height;

 // 毕业学校（选填）
 private String school;

 // 爱好（选填）
 private String hobby;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public Person(String name, int age, int height) {
 this.name = name;
 this.age = age;
 this.height = height;
 }

 public Person(String name, int age, int height, String school) {

 this.name = name;
 this.age = age;
 this.height = height;
 this.school = school;
 }

 public Person(String name, int age, String hobby, String school) {
 this.name = name;
 this.age = age;
 this.hobby = hobby;
 this.school = school;
 }
}
上面的方式确实能在一定程度上降低构造函数的长度，但是却有下面的缺陷：

导致类过长。这种方式会使得 Person 类的构造函数成阶乘级增长。按理来说，应该要写的

构造函数数是可选成员变量的组合数（实际并没有这么多，原因见第 2 点）。如果让我调用

这样的类，绝对会在心里默念 xx!!
有些参数组合无法重构。因为 Java 中重载是有限制的，相同方法签名的方法不能构成重

载，编译时无法通过。譬如包含（name, age, school）和(name, age, hobby)的构造函数是不

能重载的，因为 shcool 和 hobby 同为 String 类型。Java 只认变量的类型，管你变量是什么

含义呢。 （看脸的社会唉）
JavaBean 方式
上面的方法不行，莫急！还有法宝——JavaBean。一个对象的构建通过多个方法来完成。

直接见下面的代码：

public class Person {

 // 姓名（必填）
 private String name;

 // 年龄（必填）
 private int age;

 // 身高（选填）
 private int height;

 // 毕业学校（选填）
 private String school;

 // 爱好（选填）
 private String hobby;

 public Person(String name, int age) {

 this.name = name;
 this.age = age;
 }

 public void setHeight(int height) {
 this.height = height;
 }

 public void setSchool(String school) {
 this.school = school;
 }

 public void setHobby(String hobby) {
 this.hobby = hobby;
 }
}
客户端使用这个对象的代码如下：

public class Client {

 public static void main(String[] args) {
 Person person = new Person("james", 12);
 person.setHeight(170);
 person.setHobby("reading");
 person.setSchool("xxx university");
 }
}
这样看起来完美的解决了 Person 对象构建的问题，使用起来非常优雅便捷。确实，在单一

线程的环境中这确实是一个非常好的构建对象的方法，但是如果是在多线程环境中仍有其

致命缺陷。在多线程环境中，这个对象不能安全地被构建，因为它不是不可变对象。一旦

Person 对象被构建，我们随时可通过 setXXX()方法改变对象的内部状态。假设有一个线程

正在执行与 Person 对象相关的业务方法，另外一个线程改变了其内部状态，这样得到莫名

其妙的结果。由于线程运行的无规律性，使得这问题有可能不能重现，这个时候真的就只

能哭了。（程序员真苦逼。。。）

Builder 方式
为了完美地解决这个问题，下面引出本文中的主角（等等等等！）。我们使用构建器

（Builder）来优雅、安全地构建 Person 对象。废话不说，直接代码：

/**
 * 待构建的对象。该对象的特点：
 *
 * 需要用户手动的传入多个参数，并且有多个参数是可选的、顺序随意
 * 该对象是不可变的（所谓不可变，就是指对象一旦创建完成，其内部状态不可变，

更通俗的说是其成员变量不可改变）。
 * 不可变对象本质上是线程安全的。
 * 对象所属的类不是为了继承而设计的。
 *
 * 满足上面特点的对象的构建可是使用下面的 Build 方式构建。这样构建对象有下面的好

处：
 *
 * 不需要写多个构造函数，使得对象的创建更加便捷
 * 创建对象的过程是线程安全的
 *
 * @author xialei
 * @date 2015-5-2
 */
public class Person {

 // 姓名（必填），final 修饰 name 一旦被初始化就不能再改变，保证了对象的不可变

性。
 private final String name;

 // 年龄（必填）
 private final int age;

 // 身高（选填）
 private final int height;

 // 毕业学校（选填）
 private final String school;

 // 爱好（选填）
 private final String hobby;

 /**
 * 这个私有构造函数的作用：
 *
 * 成员变量的初始化。final 类型的变量必须进行初始化，否则无法编译成功
 * 私有构造函数能够保证该对象无法从外部创建，并且 Person 类无法被继承
 *
 */
 private Person(String name, int age, int height, String school, String hobby) {
 this.name = name;
 this.age = age;
 this.height = height;
 this.school = school;
 this.hobby = hobby;

 }

 /**
 * 要执行的动作
 */
 public void doSomething() {
 // TODO do what you want!!
 }

 /**
 * 构建器。为什么 Builder 是内部静态类？
 *
 * 必须是 Person 的内部类。否则，由于 Person 的构造函数私有，不能通过 new 的

方式创建 Person 对象
 * 必须是静态类。由于 Person 对象无法从外部创建，如果不是静态类，则外部无

法引用 Builder 对象。
 *
 * 注意：Builder 内部成员变量要与 Person 的成员变量保持一致。
 * @author xialei
 *
 */
 public static class Builder {
 // 姓名（必填）。注意：这里不能是 final 的
 private String name;

 // 年龄（必填）
 private int age;

 // 身高（选填）
 private int height;

 // 毕业学校（选填）
 private String school;

 // 爱好（选填）
 private String hobby;

 public Builder(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public Builder setHeight(int height) {
 this.height = height;

 return this;
 }

 public Builder setSchool(String school) {
 this.school = school;
 return this;
 }

 public Builder setHobby(String hobby) {
 this.hobby = hobby;
 return this;
 }

 /**
 * 构建对象
 * @return 返回待构建的对象本身
 */
 public Person build() {
 return new Person(name, age, height, school, hobby);
 }
 }
}
客户端构建对象的方式见下面的代码：

/**
 * 使用 Person 对象的客户端
 * @author xialei
 * @date 2015-5-2
 */
public class Client {

 public static void main(String[] args) {
 /*
 * 通过链式调用的方式创建 Person 对象，非常优雅！
 */
 Person person = new Person.Builder("james", 12)
 .setHeight(170)
 .setHobby("reading")
 .build();
 person.doSomething();
 }
}
如果不想看代码，可看下面对于上面代码的总结：

通过 private Person(..)使得 Person 类不可被继承
通过将 Person 类的成员变量设置为 final 类型，使得其不可变
通过 Person 内部的 static Builder 类来构建 Person 对象
通过将 Builder 类内部的 setXXX()方法返回 Builder 类型本身，实现链式调用构建 Person 对

象
总结
至此，我们就相对完美地解决这一类型的对象创建问题！下面来总结一下本文的重点。待

创建的对象特点：

需要用户手动的传入多个参数，并且有多个参数是可选的、顺序任意
对象不可变
对象所属的类不是为了继承而设计的。即类不能被继承
依次使用的对象构建方法：

单一构造函数
多构造函数
JavaBean 方式
Builder 方式
最终，通过比较得出 Builder 方法最为合适的解决。

