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LURKMW—E “8” =EH, 190 Yarn VS Mesos. Hive VS Spark. Flink VS SparkStr
eaming VS Apex. Impala VS Presto VS Clickhouse %, KB EEM ARG, M
RV AR, FH R M AT LR E.

FL L, A)UEF, REBEVTEELSEBREMBEEFRSIZE (Clickhouse@2016

FEFR, PyTorch@2018 F£FFJR) , LL Apache Mesos EIMEZ IR NER, KEUIEM
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| 01 HTFMARIKIBERIHS

BigData IR L1242 90 LR L, FE Google B9 3 B&EILC (GFS, BigTable,
MapReduce) ZE, BZEZRET Rk 20 F, X 20 F£/, #t4E 78 Google KEIRIER,
3 Cosmos K%, PR YKFRS, FIR Hadoop RAZMFNRL. XLERF—F
S FEN “HFNT MZERN A" B9,

BENBIEUNEEBSHNE, W5ITRERAN, RAREDABIENE AR =
(Cloud) RUHEXBEARBIBR AN FH/ N EFAIG, BN, AEERAREESY
B, ZEEE=EMIN (BEEM/Azure zEE) MMEEE (WExR) £H 7 AEELRE
20 I IEHHYfE 15 Fo RRRIBRIENE, Ha T —MEREBXRITIE “Z IR HIE
BRMNERE" . 2EBRNRAEEENREE T RMIEITHAIE D TIF, BEMRZNER
MINEBHIEF /W S5e BSOAMBRGZRMNAE, SABIERMARR, SFRARENLREK
48, LIRBSAEREFRE S 75 E M —# R,
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XABMDALZFBEX, 2PANNA, HERERKRNERM, RNRTRER BRES
Ho XIEMIFESIE, AEMFELHERBRIT,

MERZEWNAES, “Shared-Everything” ZEHE#. MEeRARN—FLRE.
ZEEFRNEMIZIT AR UREFH A 25, BHTESRANENRS,

1.1 2FAERWAE, FEE(KM Shared-Everything 22953

2 EARAUR I R AL, MEFRBIRER Scale-up RAFIEN Scale-out &R, M5
FRRENAE, BAZEMOILIIZE Shared-Nothing (12#F MPP) , Shared-Data,
Shared-Everything =#hZ2#4,
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KBBES o EIERFER, FIRLNNHM AR BITEFOSETER 5%, BFTE] 30%. Al
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RIS (#1.1) N8B Shared-Nothing. Shared-Data. Shared-Everything =#Z25h,
EEZZMENAERR (7% Cosmos/Scope k%, FIFE = MaxCompute) #A
Shared-Everything 2243, REILEZEFEM Shared-Everything ZRIBE, R AHIEIIE D
A 6 DEMBFME. 3 - MERTUE, H 9P, BAEINTE,
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I ZFENRRE, SPIEHE—ENHRITE, TEZSIMETRHRASDFIE

REHAE. BEERNUNERES A,

2.1 pHAFEEZEEELERSR

NENENE, AXFEERAEIEEENHIVFMHE, B2 NEENTEIRES (Stateful) 2
RS, BEd. JEAE. AR ARt ARE. (F: TRON, RXAT
RS E, FRRFBIRERSH, )
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F—X, PHERNEFENERKRESIE GFS #1 Apache Hadoop B HDFS, 9h%
12 & M Append-only XS, [ HDFS £ NameNode i BMEAMAE KX A EHE
RABET D HERFP N HIES ITRNENR, BRESARUATEEBMNEERS, NN
Cosmos (AR E# AL Azure Blob Storage) , LUINFIEEER Pangu &4, HDFS EA
FREMENEER, HEOMAELIME, RN HDFS XASSZIEMRSKENETEEMRER
SRR LEESTo

B, EFTLRRE, MEENREERTRAE BIUEENRA) , BAY
Append-only X RF 2 b, HE—EZFEE/NNRNTEIRRSE, RN REE
(Object-based Storage) , HAHRREIE AWS S3, FIE = 0SS, BER—RENZE,
S3 5 0SS ¥JaIERIRE R, AL/ HDFS BYSEBYT7iE/E o

F=, MERIERAARR, BoITERANLRE, Uk Q015 F2/F) MERARH
T, FETE—NRAZHFRREEFE (FEREL) + FETESBERMEEERA.
XUEHEHERNER. FNRAFMETE D BHRHEIERENEFR TR, EX
DD TIIRE T Alluxio FEERFARS

oA, LEITED, MEESEEN, KELUXNBAZER, RikFERSE
NzMEBEERNRITTRAARE, NTTABEAZE—FEEFERAFESE. HE—HNET
SATAHAEBIRSE, A Mem/SSD+SATA (3X &17)+SATA (1.375X AHERRY EC &1n)+kTF
fif (BALAZR AWS Glacier) FZRAGUEH. MAEE/ ERRREIEEMED R, HEIK
K5MERER Trade-off, BZEFHEAFRRIXEI . XMAET AKX, FRIILEES
T, RIFBIKFRIVIART BB EFERSS M.
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Om / RAID 8:3 HDD (Pangu RAID File) \ 8 =
- / (64% Data, 10% Table Scan) \ Qm
Cold Tier
ZHEH + SMREER
_______ {20% Data, No Table Scan) - "
BHEHESH, HRERITINATR EEFRnRRE, STHEREE

Tiered Store Analyzer
(Bl: [MEEE MaxCompute HZE—KLEMER)

EERRGZz £, B—EXHEFHEBINE (File Format layer) , 5SEEARKRTIE

Xt

FERE—K, GaXHERERR. EEMNREEARUK Index ZHE, BriFnmE
AITEEIE U2 Apache Parquet 1 Apache ORC, 953k 8 Spark 1 Hive £735. m&EYH
IEMAEBIENFINFEER, ORC EEERID L BRK, Parquet TEF &R EF M.
k955 B —MAEFEE T Apache Arrow, IZITHARET format, EFEENRNEFZIRM.

FERE =1, I Apache Hudi/Delta Lake HHRMESLIFLEFM#ER. FhE
BIFEH, BAXMGIIFERIL, BREtXRMmt (MaF latency) o MESRIILAIES, L
FRNANEFEENIYEZIFEIER, Databricks #H T Delta Lake, Z#f
Apache Spark #HITUTSEBEIELIE ACID #21E; Uber #H 7 Apache Hudi, SZ#pEILATHEY
HE Upsert 8871, REZETATLIE FTHETE (90 Merge on Read or Write)
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BEAFNBEEIXFHFEEXHNAR, BEUEEFTNEABRRIER (BREsR
Parquet/ORC EMIETEFHMTLZES] FullMerge 12E) , MBI SLRL1EME. FAM
KB AM, BRI REMERNX S Merge URBHIE TTHIESR, #HOMEEZ, Delta/
Hudi #9284 format. ME—EMRS. FHEEABRAXNNENRXFAIREHR, 255
RNZR3|EE, TERRFEANEEER, MESHRESWHRESTRERAGRE. TRNE
IR EHEIMZE T LogStructuredMergeTree (JLFEFTBEMLEIEE) oE Lucene
Index (Elastic Search F91&=0) HA T,

MTFERZRVEL/NERTIREE, HESRMEOMINEN L EH KAV (5190 GFS/

HDFS) , BEERBEMNINEBEEREEHT, ABRTRUNEE—EIERS (I
AWS SR G m RedShift) o M PNAEBIRARTER S,

AR BEX KR &R

[ECENRIBIEFERS, B LaFE—K/FEIBIRSS, SFEEEE

d 5EB, ZFFIEEEMAERMELRBIRL S, dK 5 FEHKEIN T

1.

2017 EXH RN EEALRNETF Apache Orc B Aliorc B : FHBE=ER C++ ORC
writer R Z MEE MM UM RE X, FPARREFTF R XM IEE 1 i
PMC. 1 il committer # 2 fif contributor, it 40+8%%, 2w+{T1H,

2018 £, AliOrc ER AR T Eiemis: BIRP L. SRNFREFEEIIM. BhEA
FEIR. zero-copy NTEMA. JFREF decimal HRRIEM . BIENRBEL LA
B, B MRAZ B BERRF 20%.

2018 F, FinBReUS BEENRTR. EFTHIESEDT, REED AEIE. B
R, VIREEURAL 2B, @i SSD. HDD. EC FmSFIL NSRS ATREY, Bk
EDMERRBNES Lo XA TEREDEFMEE, BT 15%+HFEMAE, REIER
TableScan AR+ 50%+,
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2019 &, FFIAEIRATLaYER, BT Aliorc B9 block 45! Zone Map, LUIK—Fhal Ll
SRR L DA R F ARSI EIEE SRR —#EH Z-Order Index, @13 1518 T
BERLIRRET Do

2020 £, 2EALKS AliOrc v2.0, BIHITUREERAR. EFNUHITIO, LUKkER
RISz FEEAIRAY 10 Manager, #—F 1A TG 48, [EIRY, AliOrc 551 REES,
S5 row group XY5%. lazy read. lazy decoding, 4%i— 7 ERFMBLRAFANTIEFEX
(RRERN:P

Compute Engines
ODPS Tunnel Hologres ODPS SQL PAI CUPID

In Memory Data Layout

Use the de-facto
columnar memaory

Apache Arrow standard to talk to
various compute
engines,

Table Reader Writer

Unified interface for
Ta b[e Apl o access to different
(table metadata, schema, splitting, etc.) table types.
AliOrc Adapter Data Format Reader Writer
(Delta File, Cluster Meta, Type Casting, Schema . -
Evolution, Legacy Nested Types SerDe, etc.) Parquet csv JSON File format specification
Reader Reader Reader and individual
AliOre Core Writer Writer Writer reader/writer
(Encoding, Compression, Index, PPD, 10 Manager, etc.) implementation.
R 10 & Caching

(Abstractions of File Systemn, Input Stream and Append-Only Output Stream)

Unified view of file

Data Caching system to enable
(L1 Memory + L2 SSD Cache for Frequently Accessed Data) heterogenous data
source and automatic
MCES caching.
(Global Virtual Namespace, Mount, Unmount, Authorization &
Authentication)
Underlying Storage
Pangu 0ss HDFS

(B: FEX#HIEAR - MaxCompute 7FfiEZRH)



15 > 02 REUBARBIINLE
REXRR, BMNBIATERNEZRAA/EEEER:

1. FeEmE, FRIEIBEIER=ZFAMNITE, FERAEUNZRENTRALE,
FamE, BAURDBHNTFEMEREMAANXEFE (XHHE, Si8EH~m
WHSERAGE) , AlTEDBREE ERIEEARIIER.

2. Format BHE, =#@EuEM, EBRSKRARAIRIBREUATMBEAREHR (RISHE
ZEriEAL R ERNMETEER) o

3. WIEHNBECH-—TRE, EEFEENUNENHRS. FHEEBNZE, S5iHEN
BRZBMHA, MARPRER, MERLT —PMER, BINHARTENERIE.

22 HVAE, ETERE, RFE—ERNFEZZTURRE

HERREERNMIVTENZOEGEN, AREMRATEMENMES R RRMLTE
MiRE, £ “FBLER” , Google B9 Borg 4%, FHR Apache Yarn 4&|BEXMEUAY
KB m, K8SEAREIEITREIRAE AR LNEESEH, MEBBXMIEARF, § ‘XK
£ FREMNEMESITRERS, F2XFIEHA. PO HAE. ELBLES
HE. ohSHESEFERERLDENRIL SR THHIE/ R R/ATEEER K.

BN HAEREE:

 FOEIAELSRM: M Hadoopl.0 B9 MapReduce. E4ARH Borg. M
Kubernetes B2 /OMEIZITRVIAEESR, HRE—MIEESRATRESIERAEEFAN
M2s. FRIBROAERT, KEHMAFRKAMKEEEIED R HRIEEMEL
ERANAIN, AFRESENNAREMIRNFLEEELE, HERERE T RE
TRl 7 B =R R IR, Yarn. Mesos #@X 5244,
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 HERSRAERG: F¥0500RENX. NABRNSMEAEREIAE —HEFRESH
gBlA, HEEAERS MM EFFRSERHITER. W Google B Omega.
Microsoft B9 Apollo, #BRXFHEEH,

- 29WIVFEZRM: M Sparrow IR V2 AR RN EINEF 0. HE
28 2 B2 B ERIIE, HEFRARSZEBIRINIEERRLIEREN AR,
 RANBAERN: XMRVES TR ONEEMEZRESERITT. —REMFIFERE
7, PRREDAEIITHDBNEE, FMRLEBERTHARNFOXEVIEE,

\|

.
Scheduler

[

[ [e) ° oll e

901\1\ &E?

(a) Monolithic scheduler. (b) Two-level scheduling. (c) Shared-state scheduling. (d) Distributed scheduling.  (e) Hybrid scheduling.

olle

Figure 1: Different cluster scheduler architectures. Gray boxes represent cluster machines, circles correspond to tasks and S; denotes
scheduler i.

(B : The evolution of cluster scheduler architectures by Malte Schwarzkopf)

TR RBFERASRVBERARETHMERY, TEEMRELERET, HFEAEL
TN EERIEERE

- BIERE:. 2HEEXENASKRS HRSFHERRDR, FERMUERERET
8] 5 L& H BEo

- FRAE: T ESEEAESURES, W RIREENREE S RE AR AL,
[ERYIEERFIRAE—T T X, EROERIEEZRMANES.

- HEIAE: 2587 MapReduce WEERZ AN B IFEISWE. #HE Shuffle BY
2RMNL. TOFNBRNENESEAZRIEALEER.

 BNIAE: HRSENTH SLARE—BLREFAFRMIW R L1875 M. Borg
FHBRRRBBRIZERRARNTZF A AT SR, BB SHER SLAF
XK, TREMEEAA4E.


http://www.firmament.io/blog/scheduler-architectures.html
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FEBMAVAEERMZE Fuxi(fAE). Fuxi RATENT YRENBAERS, &
Sigit LR— M EANEERS, tRUVSHEERTENAR, BEERABIEITEN
MaxCompute (ODPS) , Blink, Hologres, PAI, ADS &P,

AEITEES

DataWorks

| eI

DAG 2.0 itEiEE ShuffleService #gEshuffle
FuxiMaster &FREE FuxiMaster & EEE FuxiMaster & EEE
Tubo Tubo Tubo Tubo Tubo Tubo

AR BHEE § BERE BHEAE | BVEE BEEE

« BUERE: Fuxi U ARE—RIBHT ZEETENZERAENRS, HETEERY
EBEFRR. BEFTERE. 25 SHASERALIN T B4R FEETR
S B KEHR, RN Z BN RETE,

- RRAE: Fuxi BEEREARE T EROURRIFELRN, PEEZT 10 HRSHE"
10 AH% job EMEAE, A&EASEMET BN, EF Fuxi NRRIBAERES, It
AITER] B EE ARSI A TR A, [B%E Fuxi Xt Kubernetes ZFFHRASHY#H
— 5%, F—RRMFE—RENRENMELBERRANARE—TIEF.


http://www.cse.cuhk.edu.hk/~jcheng/papers/yugong_vldb19.pdf?spm=ata.21736010.0.0.220a74437cEmFg&file=yugong_vldb19.pdf
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- HERE: lBEASEL S/ CRIEKMFTERENIFEEN, ITREREERT
ME Al BB, UEFNSEENENZFTHERAEEESERNEAMNRIT
B

HRERAE - SiREIEMN (
8+5 |
T e spl
|

iz 8h

bt ] P L8
s gy LERY GEN
KA N
[~10K STHI] | RiE
e
g\
/RS REi
(K SEH] 7 » L u
. T 97 R (B AE L) :
[correctness]  [benchmarking/ [dynamic/adaptive]

performance]

- BHUAE: Fuxi FEBRTRLRESHMER. RRBFERE. ZRMNBAFE
SFEAENR; EERXEL T ETRUAREBAN R RIBERE, BAT ZRIREN
MAREAED. ETHRANNRRERTRT], BERAZIE TN +— 0 RIEER
5% 5 ME, N T—BARMRBIEENEIT, RET SMTRILFST—EN,

[MEBBARLEFERERZNARE, HEFATN—NERIRBANERE XL
REVIRBUENK, WRER. BEEIAES; AN, R4 A EBHNME, BIRARFEEN
BEJIRKNIBIRITEERZRERE. MEEBREERS, ETHRGKABEH D INBAE
REWSRRERRET], WET Kubernetes WEB/HHRBRMNFE—BAEM L, WELRY
RRME—EE, BASRARMNFAER, BRAZ.
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RERK, BiIBETRNEARER/EEETER:

K8S —IEEESR: Google Borg REFIER T i—NHRIREIEE N TR M LEMH
IBIE#, RE K8STE “IFELARS™ WE LIZABHE, K8S HEMBIE UM R ERYHE
HIIRITHNIZ AT U N R AR K. AMIEEESS (bl KubeBatch) R HAIRHER

BEEZEZUMERL. BEEMRRNES (BI, ZETESE) , BEREY
DER—HEMERENMLL, AlEEXEAE (KL, RE581 Google Borg
MELXAFERE Simulation MEFTESZHIRF RKEIFUNT) -
HERSEGIEE SR RIZZRMEY ARM 0B AT EMENMS, GPU/TPU &
Al RS H BRAER, FERAFTEBH FZMFWEF, FHaRESNEQ,
XT3 K8S A Vit BRERIL S,

2.3 THIRIRSHE—K

TOHIERS R T REFaREZ ERNE MRS ZENMERNIETT, THERSE

TLARSS, BEARM. SRS, FEATRHESUAE. BREMENRSES, B
BZEERERE. At 258 @) EEFRN. TERREUT =7 ENRE:

. DDL/DML B9V 53B48, 1RFE ACID B, REEHIEREMN—34,
« BINSENEES), RIEFIRARINZ M,
. Meta(7oHuE) SR BEENEIEEES, REEVAIFRE M,

F—RTHiERY

E—RAMIBPEEHTHIER S Z Hive B Hive MetaStore (HMS) , TERHAARAR

HMS To#IEIRS & Hive WINEBEARSS, TTHUREHT (DDL) A DML /R #URIRE B —24
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M Hive B322SS, TIIENFEESTERT MySQL FXALUEESIE,

EEE P HIEMIAEN—3E (ACID) « AL (Z31%E, ZHIER) « KM,
DR R MRS BEE IRV ESRERK S, 50 HMS BT RRTS2EE, SHEFA, Hive N
THRENEWAEER, NEESENRZER, BHRAEST T XERREAMER
EFEEY ZEHK,

BT HIERY

FERITHIBERSZNNARER, BIRIERR Apache IceBerg, MaBRERXRANFEERE
AEIEF B MaxCompute BITTEIBR RS

IceBerg BHRATIET 8 RIIMELIAVRIZ T35 EMEFMEN “TEERAR , HE
FRRAIIZO P Z R BN IER) ACID, DUIRFRM D XB iz MRz R IEaelil.
SLHL 575 L IceBerg BY ACID 3T T X £ 48 POSIX BIEN, DX BITHIBERA T X4 A
f7f#, [EIBT, IceBerg By Table Format JRiZF Hive MetaStore Ryt RO, H LS|
ZM adoption ERARE, FERZNEIZEME,

BT ARKOARMBEBN D, HHB, BENA—THERSURUER, 2R
7/, #FaiRM T DataCatalog BRSS, F5Z 5| LT CHIEFERERIIR,

AR BEXHEER 5

fIEBERARBREAER, BHTH—BTHERS:
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MaxCompute (FIEEBEAXEIE
Fa, AEE=)
TCHIERAXA T HARS L scale
EHERN Hive WINE  TTHUIEEMEER Table out 224, TTiIREFMHEERTRE KV
Zegit RS, TTEIRFMEMER Format, JRIZF HMS 2 78518, ERNRSUEONET
IR, Mo KV FERET, BRIFHNEST HMS
SO

HMS (8—1)  IceBerg (5=f)

5 HMS %7, 518

ETF HMS+HCatalog, adoption EpARS, &  FAE HMS #O, A HE

S ERAZFF .
<¥FHadoop FHRSIE EENS|IE0E, ZHF  MapReduce, MaxCompute, PAl,
(Gr—To ¥R

A8 Spark. Flink. Presto. Spark ERREMARITESIE
Hive &35|2&,
AHE Schema BEEE, BFAF, %8 Schema Evolution EX BEF#iEEM#ENEENE AT B
EIREE Lty RRES] =t M, REZEERXERT.

R RFNRFIER AEZHER, $5|1%, ARHEF

X ACIDTable KAz ¥
7B, hRAIHRBIEREZE SB9 ACID BE). BT R R I

EHBRIUE, AKRFARIE . . N
o 3 RS, RO, e AR SR BN RIEER. X
ACID AR, HEHEREKER \ .
| MEEFEH, AT FomftEO. ZRFEMHmE.
TREER T oEEHE
“slow changing” H91% Versioning, K& Hi/ERIERIER—

MR-
o Mt
ETHIER RO E, RS
BRI RMAR B BT, R BN —HIKS RS, NG —BIERARSS,
Bl=
ERIFZE— O A REEST B&®S qps, i latency, B AN
LRSS BIRESTo
ETNHNZTREM. KAIUEES
N \ £ qps A latency LU . _
SREME  FHRFMERELURAIEL BEEMRITES, RUEBREMERE.
_ MARSS1EBY scale out
SiRE M BREN R AR BETFBEERZEIANTELA S REED
KU B

VB RE DR RS P S MERER.
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Console/SDK Datawarks HeT+
Studio - - B e

MaxCompute worker

MaxCompute SQL/Tunnel Batch and
) Streaming Ingest, SQL ACID Table
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