
想上岸 ╳ 找上岸

>>>>这次上岸拿微软做了个实验…

一直以来上岸都强调拒绝“哑巴”coding。并提出在现在的IT面试中，算法能

力的比重正在逐年降低，取而代之的是更多的交流，以及表达能力的考察。毕竟

所有的组都是在找一名合适的同事而不是code monkey。

为了证明我们的观点，这次轮到了微软…我们安排人员参加了近期的hiring 

event, target 63 64。

这次面试为了测试我们的观点，我们遵循以下原则：

能不说话尽量不说话。

除了BQ，对于算法部分的交流，面试官有任何问题我们尽量少答。

要做Clarification，但是做的比较机械，流程化。

描述思路，但从不画图。



Coding部分必须optimal solution，并且在最短时间内写完，bug 

free。

最后的测试部分我们主动跑代码和用例，但尽量不解释为什么跑这些

用例。

那么就开始我们这一次的流程吧！

面试是早上8点开始直到12点完成，四轮，每轮1小时。

因为根据NDA, 我们将不会透露原题，此次面试几乎所有题目都是原题变种。我

们会在最后总结现在面试变化的趋势。

01

第一轮 Design File System

面试官是一个印度小哥，口语一般，上来给了一道3秒钟就被我们识破的原题变

种：Design File System。

面试官花了约10分钟问了基本的BQ，然后我们就开始正常的讨论题目了。

在开始之前我们问了如下问题:

Input/ output 类型

是否所有的input 都是valid path

支持的方法

然后这类题目肯定是难不倒上岸的老司机的，我们首先抛出使用hashmap。然后

面试官表示这能work。在交流过程中我们没有画任何的case，只是单纯简单描

述，尽量做到描述的英语as naïve as possible。

然后我们抛出了使用Trie。然后面试官说能实现一下吗？在接下来的约15-20分

钟我们单纯用正常速度写题，最后检查了一遍typo。然后面试官要求测试一下。

当时我们使用的env自带测试环境，他需要我们自己倒包和进行测试，我们写了

几个简单的用例后，面试官问我们有什么问题，官方的回答了他的废话以后我们



继续了下一轮。

02

第二轮 Reverse Integer

面试官是一个白人小哥，这人和上一个人属于同一组，强烈暗示他们组缺前端。

这一轮的BQ比较多，约20分钟，还顺便问我们喜欢做什么。我们说我们前后都能

做，无所谓，只要项目有impact就行。于是开始了coding部分。

题目很简单, reverse 一个数字：Reverse Integer。

我们问了如下问题：

Input/output

Input range/size

Positive/negative

我们知道有overflow问题但没有问，打算在code一次解决。

然后这类题目在面试的时候肯定属于是挖坑题的。题目本身简单，但是往深了

想，绝对不会只是一道Easy题。

代码时间当然很简单，因为input是Integer，所以注意正负，以及Integer类的

溢出问题。五分钟就写完了，大概跑了几个case。可能也没什么好聊的了，面试

官要求我们写unit test。我们先写了几个简单的system print然后证明我们是

对的，但面试官必须严格要求我们有Junit, 所以之后写了一些Assertions。

我们给了全面的test case，正负，溢出，零等。但是注意，我们在之前的交流

过程中从来没有交流过如果溢出怎么处理，只是在代码上全部返回0。

这一轮就这么结束了，代码肯定是无懈可击的。



03

第三轮 jump game II

面试官是一个白人小哥，这次换了一个组的后端。这一轮的BQ正常，约10分钟。

然后贴心的给我们描述了怎么用coding env。于是开始了coding部分。

题目很简单, 上来说有个数组，然后有个起始点，第一感觉就是jump game。然

后变了一下其实是jump game II 的变种。

我们问了如下问题：

Input/output

正负数, value range

能否回跳

Array size

能否一定跳出

上去我们先说用greedy。然后就大概五分钟写完了。然后这一轮是最快的，跑了

三个case，感觉面试官也想下班吃饭了，所以就问了三个问题，大概25分钟就结

束面试了。

04



第四轮 minesweeper

面试官是一个印度小哥，是第三位的老板。这一轮的BQ正常，约10分钟。然后就

开始了迷之描述。反正就是越短的题目越难。题目是扫雷，但是没有给任何题

干，就是我想让你实现一个扫雷：minesweeper。

我们问了如下问题：

我们做了很多assumption，比如二维数组里面什么字母代表雷什么

字母代表空，什么表示revealed格子等等。

我们确定了用户行为，就是用户通过点击一个block能获得什么。

我们确定了返回是一个结果的二维数组。

确定了一些别的细节用户行为

同样我们只描述不画画 (啊，真是非常累！)

题目本身也很简单，做过的同学都知道BFS DFS都行，反正就是模拟一次点击效

果然后去周围算一下结果然后标记blocks。

因为这题描述比较长，所以最后写完可能还剩下20分钟。然后面试官看了我们的

代码以后没有问额外的问题，只是说，你的input默认有一个2d dashbaord，能

不能random生成一下。

我们写了五行代码搞定自动生成dashboard。当然在写之前面试官问我们想怎么

生成，我们说别废话看我写:)。写完以后面试官说他懂了。

这一轮也在欢声笑语中最后问了一些问题结束了。



这四轮的流程如果摆到论坛上应该算是一个干货贴了，但在上岸看来这只是起

步。接下来我们说说结果。

你们先猜一猜，我们过了几轮，挂了几轮???

En…很好，我们挂了三轮  (solid no x 3 L )，另一轮面试官不给

feedback。(我猜是第三轮)

我们再申明一下所有代码我们保证bug free和optimal solution…

那为什么我们挂的这么惨？

就在前几周我们和HR交流了一下。HR人非常Nice,交流中我们显然恢复了我们灵

活的嘴巴，然后把feedback都套了出来。其中三轮都非常详细，另一轮没有数

据。

我们先来看看面试官是怎么说的，我总结了一下下面几个拒点：

代码写的work，但不完全是我想要的。

每次当他停顿的时候我试图和他交流，但是我不知道怎么去和他交

流，我也不知道他在想什么，最后的代码是work的，但感觉就像是默写出

来的，我完全不知道他是怎么思考的。

我问了他一题扫雷，他给的答案就像是leetcode上抄的，写的非常

快，也没有思路上的停顿和解释。

我让他写unit test，他只是给了一些简单的system out print， 但

是我想要看他写assertion. 虽然最后写了但是我总觉得在交流上我们有



disconnect。

他的代码写的很快很好，就像做过的一样。

我让他翻转integer，他给了一个特别好的答案就像是知道的一样，

但这并不是我最初想的。

Well,  大家可以看出，很大的问题就是交流。但很多人会说，看我们的面

经，我们也做了clarification, 该说的话也说了，为什么评价这么差呢？

没错，答案就是你的描述没有完整的逻辑思路链。

如果你仔细思考下人类在碰到未知问题的时候，解决方案一定是从一个方案慢

慢优化，或者能够比较快的指出一些核心问题，然后各个击破，最后达到完美

的solution。但这次面试过程中，仿佛一切都来得太快。

你熟悉coding很好，但是每一个细节其实都应该跟面试官交流确认，在写代码

的过程中，每写一段完整的逻辑其实就应该跟面试官阐述交流并且确定你在

right track。

但凡突兀的逻辑，在面试的时候，从面试官的角度看，都意味着你做过这一题

或者在现在的VO中，意味着你在抄答案。



另外我们最后总结一下最近的面试趋势:

1. 首先，北美IT行业最近肯定在扩招，不论哪家公司，现在都是近3年来

最好的机会，不论new grad还是在职跳槽。

2. 因为VO的存在，所以大家都有很大的机会作弊，而且市场上肯定存在

这样的现象。就我们的老师在日常面试中也有不少类似发现。所以题目变

种越来越多。

3. 交流，交流，交流！不要作哑巴coder！必须要think loud and think 

out of box！

4. 这类面试能力不是一个网课能解决的，必须在每天的实战中，让面试官

告诉你你哪里错了，该怎么改进，我们的上岸算法小班就是为此而生。

5. 不论是什么级别的面试，交流永远是第一位，从交流中找到方向和答

案，哪怕这题你是做过的，也必须要遵守这个逻辑流程。

6. 最后我们想要说将来的面试，能写题已经是一个基本能力了，越来越多

的要求会从一个人的综合能力考查。如果还抱着一个算法视频觉得就能上

岸，那只能是韭菜中的韭菜了。


