
更新时间：2020-07-29 14:28:36

05 立足之本：Docker 镜像介绍

Docker 技术正是凭借镜像这一个微小的创新一骑绝尘，所以说镜像是 Docker 技术的基石也不为过。本篇文章我们

就来了解一下 Docker 镜像。

1. 镜像是什么

为了保证文章的完备性，在开始之前还是要简单介绍一下 Docker 镜像是什么。

要理解 Docker 镜像，我们不妨先看另外一组概念：程序和进程。在《深入理解计算机系统》中对程序和进程的关

系描述有一句话非常好：进程是程序的一个运行实例。程序是打包好的静态文件，而进程相当于把这些静态文件

加载到计算机内存中运行起来。相应的，容器也可以说是镜像的一个运行实例。

不过这两组概念之间还有一个重大的区别就是：程序运行还依赖于一些操作系统的文件，但是镜像相当于把操

作系统的文件也一起打包进了静态文件中。我们看一个简单的镜像，busybox，镜像界的 hello world。

启动容器：

一个不注意小事情的人，永远不会成功大事业。——戴尔·卡耐基

docker pull busybox:latest

docker run -ti busybox:latest sh

file:///read/84/article/2236
file:///read/84/article/2238

通过 ls 可以看到镜像中确实包含了很多操作系统的文件，而且细心的同学会发现 busybox 镜像中包含的操作系

统的文件只是一个精简版的，并不是全量的。值得注意的是，镜像中也只是包含了操作系统的必要的文件，在容

器启动之后，容器进程还是去和宿主机的操作系统进行交互的。

2. 基础镜像

虽然说镜像解决了容器所谓的一致性：无论在本地、云端，用户只需要解压打包好的容器镜像，那么这个容器的运

行环境就被重现出来了。这里又出现了另外一个问题：如果我们每一个应用都自己打包我们的容器依赖的镜像，

过程还是很繁琐的，那么这个过程能不能做到复用呢？

当然是可以的。首先官方镜像仓库中心提供了很多操作系统镜像，比如 ubuntu，centos 等。这样我们的应用就可

以基于这些操作系统基础镜像来构建了。

其次，对于同一个公司内部，多个 Java 应用的开发人员对于环境的依赖都是一致的，比如 JDK，tomcat 等等。我

们可以每个人都基于 centos 基础镜像来构建我们的应用镜像，但是还有一种更好的方式是我们构建出一个 Java

应用基础镜像，然后大家复用这个基础镜像。

既然已经说到了基础镜像，这里顺便举几个例子。

alpine

尽管我在上面提到很多操作系统基础镜像，比如 Ubuntu 或者 CentOS，但是这些镜像实在是太大了，在实际使用

的使用时候会导致镜像的传输效率不高。这里介绍一个精简版本的 Linux 系统镜像 : alpine。

下图是 alpine Linxu 官方网站的截图。从图中我们可以看到 alpine Linux 的核心特点就是三

个：small，simple，secure。也就是 alpine Linux 主打的特点：以安全为理念的轻量级的 Linux 发行版。很多

情况下我们都可以使用 alpine Linux 来替代 Ubuntu 或者 CentOS，而且这样会使得我们最终的镜像的体积小很多。

busybox

很多 Docker 教程都使用 busybox 镜像来举例子，而且很多应用镜像都使用 busybox 镜像来作为基础镜像，那么

busybox 是什么呢？

https://alpinelinux.org/

简单来说 busybox 是一个集成了一百多个最常用的 Linux 命令和工具的软件工具箱，它在单一的可执行文件中

提供了精简的 Unix 工具集。busybox 既包含了一些简单使用的工具，如 cat 和 echo，也包含了一些更大，更复杂

的工具，如 grep，find，mount 以及 telnet 等。可以说 busybox 是 Linux 系统的瑞士军刀。另外 busyBox 可运

行于多款 Posix 环境的操作系统中。

openjdk

Java 语言作为目前使用最广泛的编程语言，这里有必要介绍一下 Docker 的 Java 基础镜像：docker 官方提供的

openjdk。

我们要使用 openjdk 镜像和使用其他基础镜像没有区别。

3. 镜像构建

镜像构建是基于 Dockerfile 来构建的，具体来说我们只需要按照容器标准编写好 Dockerfile 文件，然后通过构建命

令就可以构建出来我们需要的镜像了。下面是一个具体的例子。

我们先通过 Go 语言编写一个 web 应用。

FROM openjdk:7
COPY . /usr/src/myapp
WORKDIR /usr/src/myapp
RUN javac Main.java
CMD ["java", "Main"]

package main

import (
 "io"
 "log"
 "net/http"
)

func main() {
 // Hello world, the web server

 helloHandler := func(w http.ResponseWriter, req *http.Request) {
 io.WriteString(w, "Hello, world!\n")
 }

 http.HandleFunc("/hello", helloHandler)
 log.Fatal(http.ListenAndServe(":8080", nil))
}

为了避免部分同学没有 Go 语言基础，这里简单解释一下这个程序的作用。这个是一个 web server，会在 8080 端

口进行监听，对于路由 /hello 进行响应，返回 “Hello, world!”。我们可以在本地启动这个程序。

然后浏览器打开 localhost:8080/hello 或者直接 curl 访问。

下面我们就基于 centos 镜像来构建我们的应用镜像并启动。

应用程序 build

由于我的机器环境是 Mac OS，我本地编译的话需要使用交叉编译。如果读者对交叉编译不了解也没有关系，可以

简单理解在某个平台编译另外一个平台的可执行应用程序。

编译成功之后就会生成一个叫 hello 的可执行文件。

Dockerfile 编写

我们将上面 build 出来的可执行文件放到镜像中，下面我们开始编写 Dockerfile 文件，如下：

简单解释一下上面的文件内容：

FROM： 表示我们镜像基于 busybox 镜像构建，这里的 busybox 是基础镜像中被广泛使用的一个镜像

COPY：拷贝文件，其中 hello 就是我们上面 go build 生成的可执行文件

EXPOSE：暴露端口

ENTRYPOINT：用来指定我们的镜像的默认启动脚本

整体看上去还是比较简单的，就算看不懂也没有关系，后面我们还会有专门的章节来介绍。

镜像 build

编写完 Dockerfile 文件，我们就可以基于 Dockerfile 文件来构建我们的镜像了。将上面的文件命名为 Dockerfile，

然后执行如下的 docker build 命令。

执行完之后如果没有出错就会生成一个镜像 hello:v1，可以通过 docker images 命令查看。

启动镜像

启动镜像我们通过如下的 docker run 命令来启动：

go run hello.go

 -> ~ $ curl localhost:8080/hello
Hello, world!

-> $ GOOS=linux GOARCH=amd64 go build hello.go

FROM busybox:glibc
COPY hello /bin/hello

EXPOSE 8080
ENTRYPOINT ["/bin/hello"]

docker build -t hello:v1 .

 04 小身材大能量：Docker 概览 
06 葵花宝典：Docker 操作参数详

解

其中参数 -p 是用来将容器的端口和宿主机的端口做映射。运行完之后我们打开浏览器，或者直接通过 curl 命令请

求 localhost:8080/hello 都会得到返回的 Hello World!

至此，我们通过一个简单例子介绍了一个完整链路的镜像构建的例子，当然我们这里的例子比较简单，由于我们使

用的是 Go 语言示例，直接是二进制文件，对环境没有依赖，所以镜像的构建非常简单。但是在日常环境中我们可

以会遇到非常复杂的环境的构建，比如 Java 应用程序可能需要我们自己去安装 JDK 或者 tomcat 环境等。

4. 总结

这篇文章，我们通过实际的例子给大家介绍了 Docker 的镜像的概念和使用。希望大家也可以动手操作一下，方便

加深理解。限于篇幅，这里并没有展开 Docker 镜像的技术细节，更多技术细节，敬请期待。

5. 参考

1. openjdk image

}

$ docker run -p 8080:8080 hello:v1

https://github.com/docker-library/docs/blob/master/openjdk/README.md#supported-tags-and-respective-dockerfile-links

	1. 镜像是什么
	2. 基础镜像
	alpine
	busybox
	openjdk

	3. 镜像构建
	应用程序 build
	Dockerfile 编写
	镜像 build
	启动镜像

	4. 总结
	5. 参考

