
更新时间：2020-07-29 14:24:25

11 动手实践：从 0 到 1 构建自己的 Docker 应用

在前面的第 5 小节《Docker 镜像介绍》中，我们简单构建了一个 Golang 的 http server 的 Docker 应用。在日常

开发或者生产环境中，很多情况下，我们的系统都不是一个应用可以搞定的，而是由很多个部分组成，比如

webapp，数据库，缓存等。所以这一章的例子，我们就以一个 web 应用 + 缓存 redis 作为例子构建一个稍微复杂

点的应用。

使用的语言和应用的版本如下：Python 3.8.1，Flask库 1.1.1，Redis库 3.4.1。

1. web 应用

这次我们使用 Python 来编写我们的 web 应用，上一次我们使用的是 Go 语言。由于 Go 语言部署直接使用二进制

文件，Dockerfile 会极其的简单，为了让大家熟悉一下 Dockerfile 的应用，所以这里我们使用 Python 语言里编写我

们的 web 应用。

Python 语言相信大家都很熟悉，不熟悉也没有关系，代码都很简单。基于 Python 的 web 网络应用框架比较出名

的有 Django，Tornado，Flask 等。我们这里使用 Flask 来构建我们的应用，因为 Flask 是一种极其轻量的框架，

正如作者所说：

不要问你的国家能够为你做些什么，而要问你可以为国家做些什么。——林肯

file:///read/84/article/2242
file:///read/84/article/2244

Flask is a lightweight WSGI web application framework. It is designed to make getting started quick and

easy, with the ability to scale up to complex applications. It began as a simple wrapper around Werkzeug and

Jinja and has become one of the most popular Python web application frameworks.

Flask offers suggestions, but doesn’t enforce any dependencies or project layout. It is up to the developer to

choose the tools and libraries they want to use. There are many extensions provided by the community that

make adding new functionality easy.

关于 Flask 的更多信息，可以参考 Flask 的官方网站或者 Github 主页。

1.1 Flask 安装

Flask 安装很简单，和其他 Python 依赖安装基本没有区别。

1.2 Flask demo

我们前面说了 Flask 是一个非常轻量的 web 框架，那么有多轻量呢？轻量到我们使用下面几行代码就可以构建出

来一个简单的 web 应用。

启动应用。

应用默认启动在 5000 端口，我们可以通过 -p 参数指定引用的启动端口。当然 Flask 还支持其他参数，我们可以

通过 flask run --help 进行查看。

pip install flask

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():
 return 'Hello, Flask'

$ env FLASK_APP=hello.py flask run
 * Serving Flask app "hello"
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

https://wsgi.readthedocs.io/
https://www.palletsprojects.com/p/werkzeug/
https://www.palletsprojects.com/p/jinja/
https://flask.palletsprojects.com
https://github.com/pallets/flask

应用启动了之后，我们可以访问 5000 端口来验证应用是不是正常的。

1.3 Flask 使用

上面介绍了 Flask 最简单的使用 demo，下面我们使用 Flask 来编写我们应用和 Redis 进行交互。首先我们也要先

安装 Python 依赖库：redis。

我们主要要实现三个功能：

1. redis 连接

2. 提供一个 route set 实现对 redis 中的值进行设置

3. 提供一个 route get 实现对 redis 中的值进行查询

redis 连接

redis 连接，我们直接使用 Python 的依赖库 Redis。

其中连接 Redis 需要使用三个参数：

root@a36d1df88169:/# flask run --help
Usage: flask run [OPTIONS]

 Run a local development server.

 This server is for development purposes only. It does not provide the
 stability, security, or performance of production WSGI servers.

 The reloader and debugger are enabled by default if FLASK_ENV=development
 or FLASK_DEBUG=1.

Options:
 -h, --host TEXT The interface to bind to.
 -p, --port INTEGER The port to bind to.
 --cert PATH Specify a certificate file to use HTTPS.
 --key FILE The key file to use when specifying a
 certificate.
 --reload / --no-reload Enable or disable the reloader. By default
 the reloader is active if debug is enabled.
 --debugger / --no-debugger Enable or disable the debugger. By default
 the debugger is active if debug is enabled.
 --eager-loading / --lazy-loader
 Enable or disable eager loading. By default
 eager loading is enabled if the reloader is
 disabled.
 --with-threads / --without-threads
 Enable or disable multithreading.
 --extra-files PATH Extra files that trigger a reload on change.
 Multiple paths are separated by ':'.
 --help Show this message and exit.

[root@docker ~]# curl localhost:5000
Hello, Flask

pip install redis

import redis

redis_client = redis.Redis(host=redis_host, port=redis_port, db=0)

host: redis 的 host

port: redis 的端口

db：redis 中的数据库，我们使用 db = 0 即可。

这里的一个核心问题是 redis 运行在另外一个 Docker 中，那我们在应用的 Docker 中如何连接 redis 实例呢？也就

是如何发现redis 的 host 和 port 呢？

在 Docker 技术中我们可以在启动 Docker 的时候指定参数 --link 将两个 Docker 的网络进行打通。在下面部署的时

候我们再细说。

set route

编写一个 route，可以对 redis 进行写入。

其中 request.args 中可以获取到 url 中的参数。但是上面的代码没有做参数校验，key 和 value 可能是空，我们加

一个参数校验的逻辑。

get route

编写一个 route 对 redis 中的值查询

至此，我们的 web 应用代码编写完成，完整的代码如下，其中 redis-host 现在还是一个占位符，我们部署的时候

会把这个变量注入进来。

@app.route('/set')
def set():
 key = request.args.get("key")
 value = request.args.get("value")
 redis_client.set(key, value)
 return 'OK. We have set ' + key + ' to be ' + value

@app.route('/set')
def set():
 key = request.args.get("key")
 value = request.args.get("value")
 if key is None or value is None:
 return 'OOps, the key or value is NULL'
 redis_client.set(key, value)
 return 'OK. We have set ' + key + ' to be ' + value

@app.route('/get')
def get():
 key = request.args.get('key')
 if key is None:
 return 'OOps, the key is null'
 value = redis_client.get(key)
 return value

2. Dockerfile

下面开始编写我们的 Dockerfile。回忆一下我们上面编写 web 应用过程中，主要安装了依赖 flask 和 redis 依赖。

我们可以很简单写出来我们的 Dockerfile 如下，并命名为 Dockerfile。

我们对这个 Dockerfile 进行一个简单解释：

from：表示基础镜像是 python:3；

RUN：表示在 docker build 的时候会执行后面的几个命令；

COPY：拷贝文件或者目录都可以；

WORKDIR：表示启动容器之后，当前的工作目录；

EXPOSE：表示容器要暴露 5000 端口；

ENV：环境变量；

ENTRYPOINT：表示 Docker 容器的启动进程。这里 entrypoint 中的 flask run 我们增加了参数 -h 0.0.0.0。如

果不加这个参数的话，进程默认绑定到 127.0.0.1，外面是没有办法访问的。

通过该 dockerfile 来构建镜像。基本每一个命令都会对应一个 step，如下。

from flask import Flask, request
import redis

redis_client = redis.Redis(host='redis-host', port=6379, db=0)
app = Flask(__name__)

@app.route('/set')
def set():
 key = request.args.get('key')
 value = request.args.get('value')
 if key is None or value is None:
 return 'OOps, the key or value is NULL'
 redis_client.set(key, value)
 return 'OK. We have set ' + key + ' to be ' + value

@app.route('/get')
def get():
 key = request.args.get('key')
 if key is None:
 return 'OOps, the key is null'
 value = redis_client.get(key)
 return value

from python:3

RUN pip install flask
RUN pip install redis
RUN mkdir /data

COPY hello.py /data/
WORKDIR /data

EXPOSE 5000
ENV FLASK_APP=/data/hello.py
ENTRYPOINT ["flask", "run", "-h", "0.0.0.0"]

构建成功之后，我们可以通过 docker images 查看到我们刚才 build 出来的镜像 web。

3. 部署

我们先来部署一个 Redis Docker， -d 参数表示以 daemon 的方式运行。 -p 表示端口映射。 -name 表示 Docker

容器的名字叫 redis-test。

下面部署我们的 web 应用。

其中有一个运行参数需要进行简单说明，也就是 --link。link 后面跟一对映射的值，左侧的为已经存在的 Docker 容

器，右侧的为该容器映射到我们启动的 Docker 应用中的 host 名字，这里也就是 web 这个 Docker 容器。我们下

面通过 docker exec 进入到容器中看一下 link 是怎么做的。

我们查看一下 hosts 文件。

[root@docker web]# docker build -t web:v1 .
Sending build context to Docker daemon 3.584kB
Step 1/8 : from python:3
 ---> efdecc2e377a
Step 2/8 : RUN pip install flask
 ---> Running in c4dfe7b3e466
Collecting flask
 Downloading Flask-1.1.1-py2.py3-none-any.whl (94 kB)
Collecting itsdangerous>=0.24
 Downloading itsdangerous-1.1.0-py2.py3-none-any.whl (16 kB)
Collecting Jinja2>=2.10.1
 Downloading Jinja2-2.11.1-py2.py3-none-any.whl (126 kB)
Collecting Werkzeug>=0.15
 Downloading Werkzeug-1.0.0-py2.py3-none-any.whl (298 kB)

Step 8/8 : ENTRYPOINT ["flask", "run"]
 ---> Running in 25594e1de72f
Removing intermediate container 25594e1de72f
 ---> d18b55e4d1fd
Successfully built d18b55e4d1fd
Successfully tagged web:v1

[root@docker demo]# docker images | grep web
web v1 02cc264143dc 6 minutes ago 943MB

docker run --name redis-test -p 6379:6379 -d redis:latest

[root@docker ~]# docker run -p 5000:5000 --link redis-test:redis-host -d --name web web:v1
64eef1f67c3934b6257510f47b587c59cee635188a4043b749966e71d2bc8c08
[root@docker ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
64eef1f67c39 web:v1 "flask run -h 0.0.0.0" 2 seconds ago Up 1 second 0.0.0.0:5000->5000/tcp web

[root@docker ~]# docker exec -ti 64eef1f67c39 /bin/bash
root@64eef1f67c39:/data#


10 站在巨人的肩膀上：热门
Docker 镜像介绍（三） 

12 Docker 隔离的本质：
namespace

我们可以看到 redis-host 已经被写到 hosts 中，所以我们在 web 这个 Docker 容器中就可以通过 redis-host 这个主

机名访问到 Redis 容器了，这也是我们的应用代码的写法。

4. 验证

部署完成，我们下面进行一个简单的验证。在宿主机上执行下面命令去设置一对 kv: <imooc, imooc.com> 写入到

Redis 中。

第二个请求去读取该值，如下。

5. 总结

至此，我们第一个动手实践的 Docker 应用已经完成。本来想弄一个更复杂的应用，但是限于篇幅，只能做了一下

取舍。虽然简单，还是建议各位同学进行动手实践。毕竟纸上得来终觉浅，绝知此事要躬行。

}

root@64eef1f67c39:/data# cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.17.0.5 redis-host 0d748e8ce766 redis-test
172.17.0.6 64eef1f67c39

[root@docker ~]# curl "localhost:5000/set?key=imooc&value=imooc.com"
OK. We have set imooc to be imooc.com

[root@docker ~]# curl "localhost:5000/get?key=imooc"
imooc.com

http://imooc.com

	1. web 应用
	1.1 Flask 安装
	1.2 Flask demo
	1.3 Flask 使用
	redis 连接
	set route
	get route

	2. Dockerfile
	3. 部署
	4. 验证
	5. 总结

