
更新时间：2020-09-08 10:02:02

14 Docker 镜像你真的理解了吗？

在前面我们介绍了 Docker 镜像的概念和基本操作，这篇文章我们来深入剖析一下 docker 镜像分层技术。

1. 分层结构

为什么说是镜像分层技术，因为Docker 镜像是以层来组织的，我们可以通过命令 docker image inspect <image>

或者 docker inspect <image> 来查看镜像包含哪些层。下面是一个示例。

如上图所示，其中 RootFS 就是镜像 busybox:latest 的镜像层，只有一层，那么这层数据是存储在宿主机哪里的

呢？好问题。动手实践的同学会在上面的输出中看到一个叫做 GraphDriver 的字段内容如下。

世上无难事,只要肯登攀。——毛泽东

[root@docker ~]# docker image inspect busybox:latest
...
"RootFS": {
 "Type": "layers",
 "Layers": [
 "sha256:195be5f8be1df6709dafbba7ce48f2eee785ab7775b88e0c115d8205407265c5"
]
 },

file:///read/84/article/2245
file:///read/84/article/2247

GraphDriver 负责镜像本地的管理和存储以及运行中的容器生成镜像等工作，可以将 GraphDriver 理解成镜像

管理引擎，我们这里的例子对应的引擎名字是 overlay2（overlay 的优化版本）。除了 overlay 之外，Docker 的

GraphDriver 还支持 btrfs、aufs、devicemapper、vfs 等。

我们可以看到其中的 Data 包含了多个部分，这个对应 OverlayFS 的镜像组织形式，在下面我们再进行详细介绍。

虽然我们上面的例子中的 busybox 镜像只有一层，但是正常情况下很多镜像都是由多层组成的。

这个时候很多同学应该会有这么一个疑问，镜像中的层都是只读的，那么我们运行着的容器的运行时数据是存储在

哪里的呢？

镜像和容器在存储上的主要差别就在于容器多了一个读写层。镜像由多个只读层组成，通过镜像启动的容器在镜

像之上加了一个读写层。下图是官方的一个配图。我们知道可以通过 docker commit 命令基于运行时的容器生成新

的镜像，那么 commit 做的其中一个工作就是将读写层数据写入到新的镜像中。下图是一个示例图：

所有写入或者修改运行时容器的数据都会存储在读写层，当容器停止运行的时候，读写层的数据也会被同时删除

掉。因为镜像层的数据是只读的，所有如果我们运行同一个镜像的多个容器副本，那么多个容器则可以共享同一份

镜像存储层，下图是一个示例。

"GraphDriver": {
 "Data": {
 "LowerDir": "/var/lib/docker/overlay2/cd7a.../diff",
 "MergedDir": "/var/lib/docker/overlay2/da4c.../merged",
 "UpperDir": "/var/lib/docker/overlay2/da4c../diff",
 "WorkDir": "/var/lib/docker/overlay2/da4c.../work"
 },
 "Name": "overlay2"
 },

2. UnionFS

Docker 的存储驱动的实现是基于 Union File System，简称 UnionFS，中文可以叫做联合文件系统。UnionFS 设计

将其他文件系统联合到一个联合挂载点的文件系统服务。

所谓联合挂载技术，是指在同一个挂载点同时挂载多个文件系统，将挂载点的源目录与被挂载内容进行整合，

使得最终可见的文件系统将会包含整合之后的各层的文件和目录。

举个例子：比如我们运行一个 ubuntu 的容器。由于初始挂载时读写层为空，所以从用户的角度来看：该容器的文

件系统与底层的 rootfs 没有区别；然而从内核角度来看，则是显式区分的两个层。

当需要修改镜像中的文件时，只对处于最上方的读写层进行改动，不会覆盖只读层文件系统的内容，只读层的原始

文件内容依然存在，但是在容器内部会被读写层中的新版本文件内容隐藏。当 docker commit 时，读写层的内容

则会被保存。

写时复制（Copy On Write）

这里顺便介绍一下写实复制技术。

我们知道 Linux 系统内核启动时首先挂载的 rootfs 是只读的，在系统正式工作之后，再将其切换为读写模式。

Docker 容器启动时文件挂载类似 Linux 内核启动的方式，将 rootfs 设置为只读模式。不同之处在于：在挂载完成

之后，利用上面提到的联合挂载技术在已有的只读 rootfs 上再挂载一个读写层。

读写层位于 Docker 容器文件系统的最上层，其下可能联合挂载多个只读层，只有在 Docker 容器运行过程中文件

系统发生变化时，才会把变化的文件内容写到可读写层，并隐藏只读层的老版本文件，这就叫做 写实复制，简称

CoW。

3. AUFS

AUFS 是 UnionFS 的一种实现，全称为 Advanced Multi-Layered Unification Filesystem，是早期 Docker 版本默认

的存储驱动，最新的 Docker 版本默认使用 OverlayFS。

AUFS 将镜像层（只读）组织成多个目录，在 AUFS 的术语中成为 branch。运行时容器文件会作为一层容器层

（container lay，读写）覆盖在镜像层之上。最后通过联合挂载技术进行呈现。下图是 AUFS 的文章组织架构的示

意图。由于 AUFS 可以算是一种过时的技术，所以这里我们就不在赘述了。

4. OverlayFS

OverlayFS 是类似 AUFS 的联合文件系统的一种实现，相比 AUFS 性能更好，实现更加简单。Docker 针对

OverlayFS 提供了两种存储驱动：overlay 和 overlay2 ，我们在前面的演示部分就是 overlay2。这两种驱动相比

之下，overlay2 在 inode 使用率上更加高效，所以一般也是推荐 overlay2，Linux 内核版本要求是 4.0 或者更高版

本。

OverlayFS 将镜像层（只读）称为 lowerdir，将容器层（读写）称为 upperdir，最后联合挂载呈现出来的为

mergedir。文件层次结构可以用下图表示。 从图中我们也可以看出相比 AUFS，文件层更少，这也是 OverlayFS

相比 AUFS 性能更好的一个原因。

举个例子，下图是我们运行中的 busybox 容器的 docker inspect 的结果。

我们在容器中做的改动，都会在 upperdir 和 mergeddir 中体现。比如我们在容器中的 /tmp 目录下新建一个文

件，那么在 upperdir 和 mergeddir 中就能够看到该文件。


13 Docker 资源限制的幕后主使：
cgroup 15 Docker 的本质是进程

5. 总结

本文先通过 docker inspect 示例入手分析了 Docker 的镜像分层技术，然后又补充了部分理论知识，包括 UnionFS

、AUFS 和 OverlayFS。 当 然 除 了 AUFS 和 OverlayFS，还有一些其他的存储驱动，比如

Btrfs、DeviceMapper、ZFS、VFS，感兴趣的同学可以自行了解。

}

	1. 分层结构
	2. UnionFS
	写时复制（Copy On Write）

	3. AUFS
	4. OverlayFS
	5. 总结

