
更新时间：2020-09-14 10:40:04

26 大话容器设计模式

容器设计模式

本文来讨论一下容器设计模式，来源于 Google 于 2016 年发布的论文 Design patterns for conntainer-based

distributed system，作者是 Brendan Burns 和 David Oppenheimer，Kubernetes 项目创始人。从论文题目中我们

可以看到几个关键词：

container-base：应用都将是容器化的

distributed system：分布式系统

design pattern：设计模式

所以这篇论文的核心应该是探讨容器化的分布式系统的设计模式，我们下面来一起看一下。

1. 概述

论文观点，继上一波面向对象编程引领了软件开发革命（1980 年代和 1990 早期）之后，目前基于容器构建的微服

务体系也在悄悄改变着分布式系统领域。这篇论文发表于 2016 年，目前来看，这个预言确实是没有错的。继 2018

年 Kubernetes 全面爆发之后，全民应用容器化的趋势已成定局。

论文总结了三大设计模式：

先相信你自己，然后别人才会相信你。——屠格涅夫

file:///read/84/article/2336
file:///read/84/article/2344


单容器模式（single-container management patterns）；

单节点，多容器模式（single-node，multi-container application patterns）；

多节点模式（multi-node application patterns）。

2. 单容器模式

容器类似 OOP 编程中的 Object，定义了一系列的 interface。不仅可以暴露应用相关的功能函数，还可以暴露一些

方便应用管理的 hook 接口。

现状

目前容器暴露出来的接口非常有限：run，pause，stop。毫无疑问这些接口都是很有用的，但是我们其实可以暴露

出来更丰富的接口给开发者和管理员来使用。另外鉴于基本每一种主流的系统都提供了通过 http server 来暴露必要

的信息，这一块容器其实也可以加强。那么具体来说，针对容器，有哪些可以加强的呢？

upward 视角

向上视角，容器可以提供关于应用更加丰富的信息，包括监控指标（比如 QPS）、profiling 信息（比如线程相关信

息、堆栈使用、锁竞争、网络统计信息等）、配置信息、log 信息等。通过这些信息，开发者可以做更多的事情，

比如系统诊断和调优点。

举个具体的例子，容器管理系统，比如 Kubernetes、Aurora、Marathon 等都提供了通过 HTTP 协议暴露健康检测

的功能。

downward 视角

向下视角，容器可以提供：

lifecycle：生命周期管理，以及每个阶段的 hook 使用，比如 Kubernetes 提供的 postStart 和 preStart。

priority：优先级管理，不同优先级应用的容器对应不同的优先级，我们应该优先保障高优先级的容器。

replicate yourself：快速创建一组相同的应用容器以达到横向扩容的目的。

举个例子，考虑一下 Android Activity 模型，抽象出了一系列的 callback，比如 onCreate()、onStart()、onStop()，

以及形式化的状态机来定义开发者如何去触发这些 callback。这种应用的生命周期管理，毫无疑问帮助了开发者降

低心智负担。

3. 单节点、多容器模式

单节点、多容器模式考虑的是多个容器被调度到同一台机器的情况。在很多容器调度管理系统中，都支持这种共同

调度的场景，比如 Kubernetes 中将多个容器组成一个 Pod，把 Pod 作为一个原子调度单位。下面讨论的前提是系

统提供对类似 Kubernetes 系统中的 Pod 抽象的支持。

针对这种模式，论文提出了三种不同的方案，分别是：

Sidecar 模式

Ambassador 模式

Adapter 模式

Sidecar



sidecar 是最常见的多容器调度的一种模式，简单来说这种模式下有一个主容器，然后其他容器都是针对主容器的

扩展和增强，其他容器在这里的角色就类似 sidecar，也被称作 sidecar 容器。

举个例子，主容器是 web server 应用容器，sidecar 容器是一个日志收集容器用来将 web server 的日志收集并转

存至特殊的文件系统中。

Ambassador

ambassador 这个单词中文一般翻译为大使，但是大使并不能准备表达其意思，我们看一下韦氏词典的准确翻译：

a person who acts as a representative or promoter of a specified activity.

这样就很明了了，就是用来负责专门活动的人。ambassador 也是取自这个意思，ambassador 容器负责主容器通

信的中转节点。

举个例子，有些 web 应用需要访问缓存，比如 memcached，这时 twemproxy 容器就可以作为一个 ambassador

容器和应用容器部署在同一个节点，web 应用像访问本地应用（localhost）一样访问 ambassador 容器，而

ambassador 容器在负责将请求路由到真正的 memcached 集群。



这种模式的好处在于精简了开发模式：

开发者只需要考虑自己的应用如何和本地的 memcached server 通过 localhost 访问

测试也非常简单，直接启动一个 standalone 的 memcached 实例即可

复用 twemproxy 的代码逻辑

Adapter

某些程度上，adapter 看上去和 ambassador 很像。区别在于 adapter 做的事情要更多，adapter 为应用容器提供

了一个统一的视图。adapter 将不同容器的输出和交互都抽象成统一的结构。

一个简单的例子，通过 adapter 来实现同一个监控指标暴露。不同系统的监控指标会有不同的暴露方式，比如

jmx、statsd 等。对于由多种应用容器组成的微服务系统，如果每个应用透出监控指标的方式都不尽相同，那么外

部的监控对接系统将会非常的麻烦。我们通过 adapter 将不用应用的指标做个标准化的封装然后再进行透出，这样

会使得外部对接更加的方便。

4. 多节点模式



多节点模式是容器可能会部署到不同的节点上，当然这里讨论的前提也是系统提供对 Pod 抽象的支持。针对多节

点部署模式，论文中讨论了三种不同的模式，分别是：

Leader Election 模式

Work Queue 模式

Scatter/Gather 模式

Leader Election 模式

在分布式系统中一个非常常见的问题就是 Leader Election，中文一般叫做领导者选举。

尽管有很多 Leader Election 的算法库，但是大部分都是和特定的编程语言相关的。Leader Election 的一种容器解

决方案是将选角算法封装到容器中，我们可以称之为 leader-election 容器，然后这些容器通过 HTTP 协议暴露特定

的选举信息。当其他应用需要使用进行 Leader 选举时，直接和 leader-election 容器进行交互即可。leader-election

容器可以由有经验的专家开发，一旦开发完成，其他开发者要使用则可以直接通过网络进行交互，而不用考虑语言

实现问题。这也是一种非常好的抽象和封装。

Work Queue 模式

Work Queue 就是工作队列，将 task 放入工作队列，然后进行统一处理。Work Queue 框架如同 Leader Election

一样，也是分布式系统讨论比较多的话题。类似 leader 选举，传统的工作队列框架同样和编程语言强相关。

我们通过容器实现 Work Queue 模式同样可以作为一种好的抽象和封装。比如实现接口 run()、mount() 等，作为

Work Queue 的抽象。

Scatter/Gather 模式



 25 为什么说容器是个单进程模型 27 Docker 容器监控方案概览

scatter 是集中的意思，gather 是分散的意思，Scatter/Gather 模式也是一种形而上学的定义。具体来

说，Scatter/Gather 模式讨论的场景是外部的 client 将请求发送给 root 或者 parent 节点，然后 root 将请求转发给

后端多个 server 来做并行计算，最后将不同 server 的结果进行汇总。最常见的例子就是分布式查询引擎、搜索引

擎等。

容器化的解决方案可以使用多个 leaf 容器和 1 个 merge 容器来实现通用的 scatter/gather 框架。

5. 总结

本文介绍了容器的多种设计模式，处处都能看到 Kubernetes 的影子，我们后面再介绍 Kubernetes。

}


	容器设计模式
	1. 概述
	2. 单容器模式
	现状
	upward 视角
	downward 视角

	3. 单节点、多容器模式
	Sidecar
	Ambassador
	Adapter

	4. 多节点模式
	Leader Election 模式
	Work Queue 模式
	Scatter/Gather 模式

	5. 总结


