
更新时间：2020-10-19 09:54:02

34 配置管理：ConfigMap 和 Secret

在我们日常的开发中，肯定会涉及到多种环境，比如日常开发环境、预发环境、生产环境，我们将这些环境区分开

一般都是通过配置，不同环境对应不同的配置。这是一种将代码和配置分离的思想，在 Kubernetes 中，就相当于

是将镜像和配置分离。

在 Kubernetes 中对于配置提供了两种对象：

ConfigMap：普通配置存储。

Secret：密文存储，比如数据库密码等。

下面我们就来看一下这两种配置的基本使用方法。

1. ConfigMap 创建

我们可以通过命令 kubectl create ConfigMap <cm-name> <data-source> 命令创建 ConfigMap，通过 kubectl get Co

nfigMap <cm-name> 查看指定的 ConfigMap 的内容。

通过目录创建

我们先在本地创建一个目录，然后将官方示例的两个配置文件 https://kubernetes.io/examples/ConfigMap/game.prop

erties 和 https://kubernetes.io/examples/ConfigMap/game.properties 下载到指定目录中。

天才免不了有障碍，因为障碍会创造天才。——罗曼·罗兰

file:///read/84/article/2404
file:///read/84/article/2410

我们可以简单看一下文件内容。

下面开始创建 ConfigMap。

查看 ConfigMap 内容如下。

通过文件创建

类似的我们也可以指定通过某个文件创建，只要将上面的最后一个参数的目录改成文件既可，可以连接多个 --from

-file 参数。

然后查看该 ConfigMap。

$ mkdir ConfigMap
$ wget https://kubernetes.io/examples/ConfigMap/game.properties
$ wget https://kubernetes.io/examples/ConfigMap/ui.properties

$ cat game.properties
enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

kubectl create ConfigMap game-config --from-file=/path-to-ConfigMap/ConfigMap/

$ kubectl get ConfigMap game-config -o yaml
apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: "2020-04-07T02:02:43Z"
 name: game-config
 namespace: default
 resourceVersion: "35384497"
 selfLink: /api/v1/namespaces/default/ConfigMaps/game-config
 uid: de85b232-7873-11ea-a328-00163e16aee6

$ kubectl create ConfigMap game-config-file --from-file=/path-to-ConfigMap/ConfigMap/game.properties

通过环境变量文件

通过环境变量文件创建 ConfigMap 和通过文件创建的方式类似，将参数 --from-file 改成 --from-env-file 即可。还

有一个重要的区别的是通过环境变量文件创建 ConfigMap 只能使用一个文件。下面是示例。

我们再通过 kubectl get 获取 ConfigMap 。

对比上面的通过文件创建 ConfigMap 的对象，可以看出来区别在于 data 字段。前面两种方式通过文件创建出来的

ConfigMap 有一个 key 对应到文件名，好处是我们可以通过多个配置文件创建 ConfigMap，然后在不同的配置文件

中使用相同名字的 key。

直接编写 ConfigMap

除了通过文件来创建 ConfigMap 外，我们也可以直接编写一个 ConfigMap 对象的 yaml 文件，然后通过 kubectl ap

ply 去创建 ConfigMap。

2. ConfigMap 使用

$ kubectl get ConfigMap game-config-file -o yaml
apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
kind: ConfigMap
metadata:
 creationTimestamp: "2020-04-07T02:09:18Z"
 name: game-config-file
 namespace: default
 resourceVersion: "35385556"
 selfLink: /api/v1/namespaces/default/ConfigMaps/game-config-file
 uid: c9a01ad0-7874-11ea-a312-00163e16aa1b

$ kubectl create ConfigMap game-config-env --from-env-file=/path-to-ConfigMap/ConfigMap/game.properties

$ kubectl get ConfigMap game-config-env -o yaml
apiVersion: v1
data:
 enemies: aliens
 enemies.cheat: "true"
 enemies.cheat.level: noGoodRotten
 lives: "3"
 secret.code.allowed: "true"
 secret.code.lives: "30"
 secret.code.passphrase: UUDDLRLRBABAS
kind: ConfigMap
metadata:
 creationTimestamp: "2020-04-07T15:32:45Z"
 name: game-config-env
 namespace: default
 resourceVersion: "35514135"
 selfLink: /api/v1/namespaces/default/ConfigMaps/game-config-env
 uid: 075dabd9-78e5-11ea-a312-00163e16aa1b

我们使用 ConfigMap 主要可以通过两种方式来使用：

1. 通过环境变量

2. 通过 volume 挂载

环境变量

通过环境变量的方式使用 ConfigMap，只能使用形如下面这样的 ConfigMap，也就是通过环境变量文件创建的

ConfigMap。

我们使用的时候可以使用 ConfigMap 中指定的 key 或者 ConfigMap 中所有的 key，下面是示例。

使用指定的 key

下面的示例是引用 ConfigMap game-config-env 中的 key 为 lives 的变量，值为 3。

我们还是通过 kubectl apply ，然后通过 kubectl exec 登录到 Pod 里面查看环境变量。

使用所有的 key

除了像上面这种使用 ConfigMap 中某个特定的 key，还可以将 ConfigMap 中所有的 key 直接映射到容器内，下面

是一个使用示例。

$ kubectl get ConfigMap game-config-env -o yaml
apiVersion: v1
data:
 enemies: aliens
 enemies.cheat: "true"
 enemies.cheat.level: noGoodRotten
 lives: "3"
 secret.code.allowed: "true"
 secret.code.lives: "30"
 secret.code.passphrase: UUDDLRLRBABAS

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod2
 labels:
 app: myapp
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600']
 env:
 - name: ENV_LIVES
 valueFrom:
 configMapKeyRef:
 name: game-config-env
 key: lives

$ kubectl exec -ti myapp-pod2 -n imooc -- sh
/ # / # env | grep LIVES
ENV_LIVES=3

同样的，我们也是通过 kubectl apply 创建 Pod，然后通过 kubectl exec 登录到 Pod 内部查看环境变量情况。

通过上面的输出可以看到确实是所有环境变量都映射进来了。

通过 volume 挂载

在 Pod 中可以定义多种 volume，比如 emptyDir、 hostPath 等，ConfigMap 也可以作为一种类型的 volume 使用。

下面是一个使用 ConfigMap 作为 volume 的使用示例：

首先在 Pod 的 spec 字段域定义一个 volumes 字段，下面包含了两个 ConfigMap 类型的 volume： config-

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod3
 labels:
 app: myapp
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600']
 envFrom:
 - configMapRef:
 name: game-config-env

$ kubectl exec -ti myapp-pod3 -n imooc -- sh
/ # env
MYSERVICE_SERVICE_HOST=10.0.211.41
KUBERNETES_SERVICE_PORT=443
KUBERNETES_PORT=tcp://10.0.0.1:443
MYDB_SERVICE_PORT=80
MYDB_PORT=tcp://10.0.51.122:80
HOSTNAME=myapp-pod3
SHLVL=1
HOME=/root
MYSERVICE_PORT=tcp://10.0.211.41:80
MYSERVICE_SERVICE_PORT=80
MYDB_PORT_80_TCP_ADDR=10.0.51.122
MYDB_PORT_80_TCP_PORT=80
MYDB_PORT_80_TCP_PROTO=tcp
lives=3
MYSERVICE_PORT_80_TCP_ADDR=10.0.211.41
secret.code.passphrase=UUDDLRLRBABAS
MYSERVICE_PORT_80_TCP_PORT=80
MYSERVICE_PORT_80_TCP_PROTO=tcp
TERM=xterm
enemies=aliens
KUBERNETES_PORT_443_TCP_ADDR=10.0.0.1
MYDB_PORT_80_TCP=tcp://10.0.51.122:80
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_PROTO=tcp
MYSERVICE_PORT_80_TCP=tcp://10.0.211.41:80
secret.code.lives=30
secret.code.allowed=true
KUBERNETES_PORT_443_TCP=tcp://10.0.0.1:443
KUBERNETES_SERVICE_PORT_HTTPS=443
enemies.cheat.level=noGoodRotten
KUBERNETES_SERVICE_HOST=10.0.0.1
PWD=/
MYDB_SERVICE_HOST=10.0.51.122
enemies.cheat=true

volume 和 env-config-volume，分别映射到名字叫 game-config 和 game-config-env 的两个 ConfigMap。

在 spec.containers 下的某个 container 的定义中通过 volumeMounts 将上面的 volume 挂载到目录：/etc/config

和 /etc/env-config

我们通过 kubectl apply 启动 Pod，然后通过 kubectl exec 登录进去看一下挂载点的情况。

通过上面输出我们可以看到对于通过文件创建的 ConfigMap 在挂载目录下是每个文件对应一个配置文件，而通过

环境变量文件创建的 ConfigMap 在挂载目录下是每个 key 对应一个配置文件。

3. ConfigMap 使用限制

对于 ConfigMap 的两种使用方式：环境变量方式和挂载 volume 的方式，在生产环境中一般建议使用第二种方式。

对于使用 ConfigMap 的几个限制这里简单提一下：

1. ConfigMap 是通过 etcd 存储的（实际上 kubernetes 中所有 API 对象都是存储在 etcd 中的），etcd 的 value

默认有一个限制是 1M 大小，这个在使用的时候需要注意。

2. 更新问题。有些情况我需要更新 ConfigMap，这个时候就涉及到能不能即时在 Pod 内生效的问题。

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod1
 labels:
 app: myapp
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600']
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 - name: env-config-volume
 mountPath: /etc/env-config
 volumes:
 - name: config-volume
 configMap:
 name: game-config
 - name: env-config-volume
 configMap:
 name: game-config-env

$ kubectl exec -ti myapp-pod1 -n imooc -- sh
/ # ls /etc/env-config/
enemies enemies.cheat.level secret.code.allowed secret.code.passphrase
enemies.cheat lives secret.code.lives
/ # ls /etc/config
game.properties ui.properties
/ # cat /etc/config/game.properties
enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30
/ # cat /etc/env-config/lives
3

环境变量方式如果 Pod 不重启 ConfigMap 是不会自动更新的。

通过 volume 挂载的方式可以在 10s 左右自动更新。

4. Secret 创建

Secret 对象类型一般用来保存敏感信息，比如密码、令牌和 ssh key 等。将这些信息放在 secret 中比放在 Pod 的

定义 spec 或者容器镜像中来说更加的安全和灵活，也可以更好的控制。

下面我们来看一下如何创建 secret 对象，有两种方式，一种是通过 kubectl 命令行创建，一种是手动创建。

kubectl 命令行创建

假设我们现在要用 secret 来保存用户名密码，我们先将用户名和密码保存到两个本地文件中 username.txt 和 pass

word.txt 。

下面使用 kubectl create secret 命令行的方式通过引用文件来创建。

然后我们可以通过 kubectl get secret 的方式来查看 secret 的内容。

我们可以看到 data 字段的数据被加密了，其实这里说加密是不准确的，这个数据其实是被做了 base64 编码。我

们可以通过 base64 解码看一下。

手动创建

手动创建就是手动创建一个类似上面的 secret 对象的 yaml 文件，然后通过 kubectl apply 创建，这里就不赘述

了。

5. Secret 使用

Secret 对象的使用主要也是通过两种方式：

$ echo -n 'admin' > ./username.txt
$ echo -n '1f2d1e2e67df' > ./password.txt

kubectl create secret generic db-user-pass --from-file=./username.txt --from-file=./password.txt

$ kubectl get secret db-user-pass -n imooc -o yaml
apiVersion: v1
data:
 password.txt: MWYyZDFlMmU2N2Rm
 username.txt: YWRtaW4=
kind: Secret
metadata:
 creationTimestamp: "2020-04-08T02:57:28Z"
 name: db-user-pass
 namespace: imooc
 resourceVersion: "35623868"
 selfLink: /api/v1/namespaces/imooc/secrets/db-user-pass
 uid: aee2388b-7944-11ea-a328-00163e16aee6
type: Opaque

$ echo 'YWRtaW4=' | base64 --decode
admin


33 Kubernetes 核心概念解析：
Pod（二） 35 容器化守护进程 DaemonSet

1. 环境变量

2. 通过 volume 挂载

环境变量

和 ConfigMap 比较类似，下面是 secret 作为通过环境变量使用的例子。

通过 volume 挂载

下面是将 secret 通过 volume 挂载到 Pod 内部的一个例子。我们可以看到最后的 volume 定义里面有一个 mode 字

段，没错，这个就是文件模式。

6. 总结

本文介绍了 Kubernetes 中配置管理的两种方式：ConfigMap 和 Secret，总体来说还比较简单。

}

apiVersion: v1
kind: Pod
metadata:
 name: secret-env-pod
spec:
 containers:
 - name: mycontainer
 image: redis
 env:
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: username
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: password
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 volumes:
 - name: foo
 secret:
 secretName: mysecret
 items:
 - key: username
 path: my-group/my-username
 mode: 511

	1. ConfigMap 创建
	通过目录创建
	通过文件创建
	通过环境变量文件
	直接编写 ConfigMap

	2. ConfigMap 使用
	环境变量
	使用指定的 key
	使用所有的 key

	通过 volume 挂载

	3. ConfigMap 使用限制
	4. Secret 创建
	kubectl 命令行创建
	手动创建

	5. Secret 使用
	环境变量
	通过 volume 挂载

	6. 总结

