
更新时间：2020-10-23 09:41:53

38 Kubernetes 批处理介绍：Job 和 CronJob

Kubernetes 诞生之初是为在线应用服务的，或者说 long-running 类型的应用服务。但是随着越累越多的企业开始拥

抱 Kubernetes，批处理的需求也逐渐显现出来。那么到底什么是批处理呢？

简单来说，所有有明确结束标志的应用都可以统称为批处理应用。比如大数据领域就将作业 (Application) 分为两

种：实时处理和批处理，其中批处理就是类似于 MapReduce 这种作业。

Kubernetes 对于批处理作业提供了两种 API 对象参考：Job 和 CronJob，从名字我们也可以看出来 CronJob 就是

Job 的定时调度。

1. Job
1.1 运行一个 Job Demo

下面是一个非常简单的 Job 的描述文件，这个 Job 会通过 perl 计算 pi 的小数点后两千位数，并输出。

书籍乃世人积累智慧之长明灯。——寇第斯

file:///read/84/article/2415
file:///read/84/article/2441

同样地，我们还是使用 kubectl apply 去运行这个 Job，然后通过 kubectl get 查看一些概览信息。

我们可以看到 Job 的概览信息包括：

NAME：Job 的名字；

COMPLETIONS：是否完成，因为 Job 也有可能包含多个容器，或者说 Task，所以这里 COMPLETIONS 的

表示左边是完成的 task 数，右边是 task 总数。

DURATION：Job 的作业持续时间；

AGE：Job 的存活时间，关于 DURATION 和 AGE 的区别，我们过 20s 再看一下就能看出来。

没错，如上显示，DURATION 为 task 执行的时间，而 AGE 为 Job 存活的时间，Job 执行完之后 Job 对象还是存

在的。

安装惯例，我们还要通过 kubectl describe jobs 查看一下这个 Job 运行起来都包含哪些信息。

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 template:
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 restartPolicy: Never
 backoffLimit: 4

$ kubectl apply -f pi-job.yaml -n imooc
job.batch/pi created
$ kubectl get jobs -n imooc
NAME COMPLETIONS DURATION AGE
pi 0/1 20s 20s

$ kubectl get jobs -n imooc
NAME COMPLETIONS DURATION AGE
pi 1/1 44s 3m42s

上面的 Job 的描述信息中主要包括：

基本信息：包括名字、标签（labels）、注释（annotations）等；

Parallelism：并行度，这个下一小节再细说；

Completions：完成的 Task 个数；

Duration：Task 执行持续时间；

Events：主要包括创建 Pod 的事件信息，因为 Pod 作为 Kubernetes 的基本调度单温，Job 的执行最后也是通

过 Pod 来运行的，对于这个示例要查看最后的运行结果，我们可以通过 kubectl logs 来查看 Pod 的日志。

$ kubectl describe jobs pi -n imooc
Name: pi
Namespace: imooc
Selector: controller-uid=63385de0-7da9-11ea-a328-00163e16aee6
Labels: controller-uid=63385de0-7da9-11ea-a328-00163e16aee6
 job-name=pi
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"pi","namespace":"imooc"},"spec":{"backoffLimit":4,"template":{"...
Parallelism: 1
Completions: 1
Start Time: Tue, 14 Apr 2020 01:08:25 +0800
Completed At: Tue, 14 Apr 2020 01:09:09 +0800
Duration: 44s
Pods Statuses: 0 Running / 1 Succeeded / 0 Failed
Pod Template:
 Labels: controller-uid=63385de0-7da9-11ea-a328-00163e16aee6
 job-name=pi
 Containers:
 pi:
 Image: perl
 Port: <none>
 Host Port: <none>
 Command:
 perl
 -Mbignum=bpi
 -wle
 print bpi(2000)
 Limits:
 cpu: 100m
 memory: 200Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 7m2s job-controller Created pod: pi-wsgmm

1.2 编写 Job 对象描述

还是以下面这个简单的 Job 描述文件为例看一下 Job 对象的 yaml 文件或者说 spec 如何编写。

Job 对象的描述主要包括：

apiVersion：batch/v1；

kind：Job；

metadata：比如 name，labels 等；

spec：主要信息都包含在 spec 中：

template：唯一必填字段，Pod 模板，定义和 Pod 的编写一致，除了不需要 apiVersion 和 kind；

selector：表示 Pod 选择器，默认空缺即可。

下面再介绍一下 Job 的并行度。Job 可以用来运行三种类型的任务，包括：

非并行任务：一般情况下，只会启动一个 Pod，Pod 成功结束就表示 Job 正常完成了。

带有固定 completion 数目的并行任务：spec.completions 定义 Job 至少要完成的 Pod 数据，即 Job 的最小

完成数。

$ kubectl logs pi-wsgmm -n imooc
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470
938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712
019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305
305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381
830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452
635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136
297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031
378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766
111959092164201989380952572010654858632788659361533818279682303019520353018529689957736225994138912497217752834791315155748
572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035637076601047101819
429555961989467678374494482553797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112
533824300355876402474964732639141992726042699227967823547816360093417216412199245863150302861829745557067498385054945885869
269956909272107975093029553211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938
000816470600161452491921732172147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835
694855620992192221842725502542568876717904946016534668049886272327917860857843838279679766814541009538837863609506800642251
252051173929848960841284886269456042419652850222106611863067442786220391949450471237137869609563643719172874677646575739624
138908658326459958133904780275901

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 template:
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 restartPolicy: Never
 backoffLimit: 4

具有工作队列的并行任务：通过参数 spec.parallelism 指定一个 Job 在任意时间最多可以启动运行的 Pod

数。

1.3 Job 结束和清理

当 Job 完成时，为了方便查看任务执行状态或者日志，Job 创建的 Job 和 Pod 对象一般情况下不会被自动清理。

我们可以通过命令 kubectl delete jobs 来删除指定的 Job，这样 Job 以及连带的 Pod 都会被删除。

1.4 Job 自动清理

很多情况下，Job 结束了之后我们是期望可以清理掉的，因为残留的 Job 对象会额外增加 Kubernetes 的 ApiServer

的压力。那么如何自动清理结束的 Job 呢？

1. 通过上层控制器来清理，比如 CronJob。

2. TTL：引入 TTL 控制器，TTL 是 Time To Live 的简称，也就是存活时间。很多存储系统中都有这么一个叫做

TTL 的参数。要使用 TTL 控制器非常简单，只需要在 Job 的 spec 中增加参数 ttlSecondsAfterFinished 即

可，这个参数的含义很明显，就是 Job 结束之后的存活时间。下面是一个添加了该参数的 Job 资源文件示

例。

2. CronJob

在正式介绍 Kubernetes 的 CronJob 之前，我们先介绍一下 Linux 系统的 Crontab，对 Linux 熟悉的同学肯定都使用

过，简而言之，Crontab 可以用来设置定时和周期性的任务。Crontab 常用命令如下：

我们可以通过命令 crontab -e 进入当前用户的任务表编辑页面，每行是一条命令，格式为时间 + 任务。其中时间

共有五个域，分别是分、时、日、月、周五种，任务可以是一个 shell 命令或者一个可执行程序。其中对时间的操

作符有四种：

* 取值范围内的所有数字

/ 每过多少个数字

- 从 X 到 Z

, 一组数字集合

apiVersion: batch/v1
kind: Job
metadata:
 name: pi-with-ttl
spec:
 ttlSecondsAfterFinished: 100
 template:
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: Never

crontab [-u username]
 -e (编辑任务表)
 -l (列出任务表)
 -r (删除任务表)

下面举几个具体的任务例子。

每分钟都执行一次 job。

每小时的第 3 和第 30 分钟执行一次 job。

在上午 8 点到 11 点的第 3 和第 15 分钟执行一次 job。

每隔两天的上午 8 点到 11 点的第 3 和第 15 分钟执行一次 job。

2.1 创建 CronJob

下面正式开始介绍 Kubernetes 的 CronJob API。CronJob 和 Linux 的 Crontab 非常类似，只不过 CronJob 的周期

性任务是相对于整个 Kubernetes 集群而言的，而 Crontab 执行的任务被限定在一台 Linux 机器上。我们先看一个

CronJob 示例。

这个 CronJob 做的事情非常简单，每隔 2 分钟输出当前时间和一串文本信息 “Hello from the Kubernetes cluster”。

下面我们部署一下来看看效果。

和其他 API 对象一样，我们通过 kubectl get cronjob 来查看我们刚刚部署的 CronJob。

* * * * * job

3,15 * * * * job

3,15 8-11 * * * job

3,15 8-11 */2 * * job

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: cronjob-demo
spec:
 schedule: "*/2 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: busybox
 image: busybox
 args:
 - /bin/sh
 - -c
 - date; echo Hello from the Kubernetes cluster
 restartPolicy: OnFailure

� kubectl apply -f cronjob-demo.yaml
cronjob.batch/cronjob-demo created

第一次查看的时候可以看到 LAST SCHEDULE 字段为 <none> 就表示没有被调度，然后过了 2 分钟再次查看可以

看到上一次的调度时间。

下面我们再通过 kubectl describe cronjob 来查看一下 CronJob 的明细信息。

我们可以在 Events 中看到每隔两分钟，CronJob 对象就会创建出来一个新的 Job。

2.2 删除 CronJob

删除 CronJob 和删除其他资源类似。

2.3 Spec 说明

� kubectl get cronjob
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cronjob-demo */2 * * * * False 0 <none> 39s
� kubectl get cronjob
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cronjob-demo */2 * * * * False 1 64s 2m3s

� kubectl describe cronjob cronjob-demo
Name: cronjob-demo
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"batch/v1beta1","kind":"CronJob","metadata":{"annotations":{},"name":"cronjob-demo","namespace":"default"},"spec":{"j
obTempl...
Schedule: */2 * * * *
Concurrency Policy: Allow
Suspend: False
Successful Job History Limit: 3
Failed Job History Limit: 1
Starting Deadline Seconds: <unset>
Selector: <unset>
Parallelism: <unset>
Completions: <unset>
Pod Template:
 Labels: <none>
 Containers:
 busybox:
 Image: busybox
 Port: <none>
 Host Port: <none>
 Args:
 /bin/sh
 -c
 date; echo Hello from the Kubernetes cluster
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Last Schedule Time: Sat, 23 May 2020 15:46:00 +0800
Active Jobs: cronjob-demo-1590219720, cronjob-demo-1590219840, cronjob-demo-1590219960
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 4m33s cronjob-controller Created job cronjob-demo-1590219720
 Normal SuccessfulCreate 2m33s cronjob-controller Created job cronjob-demo-1590219840
 Normal SuccessfulCreate 33s cronjob-controller Created job cronjob-demo-1590219960

� kubectl delete cronjob cronjob-demo
cronjob.batch "cronjob-demo" deleted

 37 Kubernetes Deployment 使用 39 Kubernetes 控制器模式介绍

CronJob 的资源文件编写主要包括：

apiVersion：batch/v1beta1

kind：cronjob

metadata：一些元信息，比如 name 之类的

spec：CronJob 的主要信息都在 spec 域下

schedule：调度策略，格式遵从 Linux 的 Cron 标准

jobTemplate：任务模板，和 Job API 的语法完全一样，只不过缺少一些 apiVersion 和 kind 等信息

startingDeadlineSeconds：可选，表示任务如果由于某种原因错过了调度时间，开始该任务的截止时间

的秒数。过了截止时间，CronJob 就不会再调度任务了，这种任务被统计为失败任务。如果该域没有声

明，那么任务就没有最后期限。

concurrencyPolicy：可选，定义任务执行时发生重叠如何处理，支持下面三种方式：

Allow：允许并发任务执行。默认选项为 Allow。

Forbid：不允许并发任务执行，也就是说如果新任务的执行时间到了而老的任务还没有执行完，则不

会执行新的任务。这种情况在某些情况下是必要的，比如多个任务同时操作一个共享资源时可能出

错。

Replace：如果新任务的执行时间到了而老任务没有执行完，CronJob 会用新的任务替换当前正在运

行的任务。

suspend：可选，如果设置为 true，后续发生的执行都会被挂起。这个设置对已经开始的执行不起作用。

默认关闭。

successfulJobsHistoryLimit：可选，表示多少执行完成的任务会被保留，默认值为 3。

failedJobHistoryLimit：可选，表示多少执行失败的任务会被保留，默认值为 1。有的时候保留执行失败的任

务对于我们排查任务失败的原因比较有用。

3. 总结

本篇文章介绍了 Kubernetes 中的批处理调度 Job 和 CronJob。尽管 Kubernetes 的主要应用场景是 Long-Running

的应用，但是某些情况下批处理调度还是需要的，比如我们通过 Job 去初始化环境，通过 CronJob 去定时清理集

群中的某些资源等。

}

	1. Job
	1.1 运行一个 Job Demo
	1.2 编写 Job 对象描述
	1.3 Job 结束和清理
	1.4 Job 自动清理

	2. CronJob
	2.1 创建 CronJob
	2.2 删除 CronJob
	2.3 Spec 说明

	3. 总结

