
更新时间：2020-06-03 13:48:06

06 Java属性映射的正确姿势

1. 前言

前一节讲到项目为了更容易维护，易于拓展等原因会使用各种分层领域模型。在多层应用中，常需要对各种不同的

分层对象进行转换，这就会存在一个非常棘手的问题即：编写不同的模型之间相互转换的代码非常麻烦。其中最常

见和最简单的方式是编写对象属性转换函数，即普通的 Getter/Setter 方法。除此之外各种各种属性映射工具。

那么常见的 Java 属性映射工具有哪些？

它们的原理以及对其性能怎样？

实际开发中该如何选择？

本节将给出解答。

2. 常见的 Java 属性映射的工具及其原理

2.1 常见的 Java 属性映射工具

常见的 Java 属性映射工具有以下几种：

1. org.apache.commons.beanutils.BeanUtils#copyProperties

2. org.springframework.beans.BeanUtils#copyProperties(java.lang.Object, java.lang.Object)

3. org.dozer.Mapper#map(java.lang.Object, java.lang.Class<T>)

4. net.sf.cglib.beans.BeanCopier#copy

5. ma.glasnost.orika.MapperFacade#map(S, D)

生活永远不像我们想像的那样好，但也不会像我们想像的那样糟。——莫泊桑

file:///read/55/article/1142
file:///read/55/article/1144

6. mapstruct

2.2 原理

1、Getter/Setter 方式使用原生的语法，虽然简单但是手动编写非常耗时；

2、通过 dozer 的 maven 依赖可以看出，dozer 并没有使用字节码增强技术，因为并没有引用任何字节码增强技术

的 jar 包；

我们再从其核心类 org.dozer.MappingProcessor 中寻找线索：

我们可以断定，dozer 使用的是反射机制。

3、同样的 commons 和 Spring 的 BeanUtil 工具类也采用的是反射方式。优点是两个是非常常用的类库，不需要引

用更多复杂的包；

4、cglib 的 BeanCopier 的原理是不是也是反射机制呢？

我们可以通过 cglib 的 maven 库的编译依赖中找到线索：

发现该库依赖了 asm ，我们去 asm 官网可以看到它的介绍：

asm 库是一个 Java 字节码操作和分析框架，它可以用来修改已经存在的字节码或者直接二进制形式动态生成

class 文件。asm 的特点是小且快。

、同样的，我们可以通过 orika 的 maven 库得到其实现依赖的核心技术：

import java.lang.reflect.Array;
import java.lang.reflect.Modifier;
import java.lang.reflect.InvocationTargetException;
...

https://mvnrepository.com/artifact/net.sf.dozer/dozer/5.5.1
https://mvnrepository.com/artifact/cglib/cglib/3.2.12
https://mvnrepository.com/artifact/ma.glasnost.orika/orika-core/1.5.4

其中 javassist 我们知道它是一个字节码操作工具。

我们去它的官网看下介绍：

javassist 让操作字节码非常容易。javassist 允许 java 程序运行时定义一个新的类，也可以实现在 JVM 加载

类文件时修改它。javassist 提供两种级别的 API ，一种是源码级别；一种是字节码级别。使用源码级别的

API，无需对 java 字节码特定知识有深入的了解就可以轻松修改类文件。字节码级别的 API 则允许用户直接

修改类文件。

6、通过 MapStruct 的官网的介绍我们可以看出，mapstruct 采用原生的方法调用，因此更快速，更安全也更容易

理解。根据官网的介绍我们知道，使用时只需要使用它的注解，定义好转换接口，转换函数，编译时会自动生成转

换工具的实现类、调用属性赋值和取值函数实现转换。mapstruct 还支持通过注解形式定义不同属性名的映射关系

等，功能很强大。

转换代码：

编译后生成自动的转换接口的实现类：

@Mapper
public interface UserMapper {
 UserMapper INSTANCE = (UserMapper)Mappers.getMapper(UserMapper.class);

 UserDTO userDo2Dto(UserDO var1);
}

https://asm.ow2.io/
http://www.javassist.org/
https://mapstruct.org/

大大简化了代码。

官方还提供了非常详细的参考文档 和使用范例，提供了很多高级用法。

2.3 性能

接下来按照惯例，我们对比一下它们的性能。

我们在 com.imooc.basic.converter.UserConverterTest 类中对上面的常见对象转换方式进行单测 UserDO 对象：

目标对象：

使用 easyrandom（后面的单元测试环节会重点介绍）构造 10 万个 UserDO 随机对象进行性能对比。spring 版本

为 5.1.8.RELEASE，dozer 版本为 5.5.1，orika-core 版本为 1.5.4，cglib 版本为 3.2.12，commons-lang3 包版本

为 3.9，10 次运行取平均值，最终结果如下：

1. 普通 Getter/Setter 耗时 365ms；

2. org.apache.commons.beanutils.BeanUtils#copyPropertie 耗时 9s273ms；

3. org.springframework.beans.BeanUtils#copyProperties(java.lang.Object, java.lang.Object) 耗时 2s327ms；

4. org.dozer.Mapper#map(java.lang.Object, java.lang.Class<T>) 耗时 9s271ms；

5. ma.glasnost.orika.MapperFacade#map(S, D) 耗时 837ms；

6. net.sf.cglib.beans.BeanCopier#copy 耗时 409ms；

public class UserMapperImpl implements UserMapper {
 public UserMapperImpl() {
 }

 public UserDTO userDo2Dto(UserDO userDO) {
 if (userDO == null) {
 return null;
 } else {
 UserDTO userDTO = new UserDTO();
 userDTO.setName(userDO.getName());
 userDTO.setAge(userDO.getAge());
 userDTO.setNickName(userDO.getNickName());
 userDTO.setBirthDay(userDO.getBirthDay());
 return userDTO;
 }
 }
}

@Data
public class UserDO {
 private Long id;
 private String name;
 private Integer age;
 private String nickName;
 private Date birthDay;
}

@Data
public class UserDTO {
 private String name;
 private Integer age;
 private String nickName;
 private Date birthDay;
}

https://mapstruct.org/documentation/reference-guide/

7. MapStruct 393ms。

由于机器的性能不同结果会有偏差，本实验并没有将转换框架的功能发挥到到极致，也没有使用更复杂的对象进行

对比，因此本实验的结果仅作为一个大致的参考。

我们仍然可以大致可以得出结论：采用字节码增强技术的 Java 属性转换工具和普通的 Getter/Setter 方法性能相差

无几，甚至比 Getter/Setter 效率还高，反射的性能相对较差。

因此从性能来讲首推 Getter/Setter 方式（含 MapStruct），其次是 cglib。

3. 用哪个？为什么？怎么用？

3.1 用什么？为什么？

通过以上的分析，我们对 Java 属性转换有了一个基本的了解。

选择太多往往会比较纠结，实际开发中我们用哪种更好呢？

我在业务代码中见到同事用的转换工具主要有 Getter/Setter 方式、 orika 和 commons/spring 的属性拷贝工具。

属性转换工具的优势：用起来方便，往往一行行代码就实现多属性的转换，而且属性不对应可以通过注解或者修

改配置方式自动适配，功能非常强大。

属性转换工具的缺点：

1. 多次对象映射（从 A 映射到 B，再从 B 映射到 C）如果属性不完全一致容易出错；

2. 有些转换工具，属性类型不一致自动转换容易出现意想不到的 BUG；

3. 基于反射和字节码增强技术的映射工具实现的映射，对一个类属性的修改不容易感知到对其它转换类的影响。

我们可以想想这样一个场景：

一个 UserDO 如果属性超多，转换到 UserDTO 再被转换成 UserVO 。如果你修改 UserDTO 的一个属性命

名，其它类待映射的类新增的对应属性有一个字母写错了，编译期间不容易发现问题，造成 BUG。

如果使用原始的 Getter/Setter 方式转换，修改了 UserDO 的属性，那么转换代码就会报错，编译都不通过，

这样就可以逆向提醒我们注意到属性的变动的影响。

因此强烈建议使用定义转换类和转换函数，使用插件实现转换，不需要引入其它库，降低了复杂性，可以支

持更灵活的映射。

大家可以想想这种场景：

如果一个 A 映射到 B，B 有两个属性来自 C，一个属性来自于传参或者计算等。

此时自定义转换函数就更方便。

如果使用属性映射工具推荐使用 MapStruct，更安全一些，转换效率也很高。

3.2 怎么用？

每种对象属性映射工具的具体用法，大家可以参考官网文档或源码中的测试类，这里主要讲映射的工具类该如何定

义。

为了避免转换函数散落到多个业务类中，不容易复用，我们可以在工具包或者对象包下定义一个专门的转换包

（converter 或者 mapper 包），在转换的包下编写转换工具类。

第一种方式：可以实现 org.springframework.core.convert.converter.Converter 接口。

代码如下：

上述只能实现单向转换，我们如果想双向转换该怎么做呢？

这时候我们可以采用第二种方式，可以继承 com.google.common.base.Converter 接口实现双向转换。

我更建议采用以下这种方式，因为上述方式只能实现单向或者双向转换，如果更多种对象类型的转换就无能为力。

此时可以自定义接口或者抽象类，支持更多种对象的转换。

更推荐大家直接定义某个对象的转换器类，在其内部编写该对象各层对象的转换函数：

import org.springframework.core.convert.converter.Converter;

public class UserDO2DTOConverter implements Converter<UserDO, UserDTO> {

 @Override
 public UserDTO convert(UserDO source) {
 UserDTO userDTO = new UserDTO();
 userDTO.setName(source.getName());
 userDTO.setAge(source.getAge());
 userDTO.setNickName(source.getNickName());
 userDTO.setBirthDay(source.getBirthDay());
 return userDTO;
 }
}

import com.imooc.basic.converter.entity.UserDO;
import com.imooc.basic.converter.entity.UserDTO;
import com.google.common.base.Converter;

public class UserDO2DTOConverter extends Converter<UserDO, UserDTO> {

 @Override
 protected UserDTO doForward(UserDO userDO) {
 UserDTO userDTO = new UserDTO();
 userDTO.setName(userDO.getName());
 userDTO.setAge(userDO.getAge());
 userDTO.setNickName(userDO.getNickName());
 userDTO.setBirthDay(userDO.getBirthDay());
 return userDTO;

 }

 @Override
 protected UserDO doBackward(UserDTO userDTO) {
 UserDO userDO = new UserDO();
 userDO.setName(userDTO.getName());
 userDO.setAge(userDTO.getAge());
 userDO.setNickName(userDTO.getNickName());
 userDO.setBirthDay(userDTO.getBirthDay());
 return userDO;

 }
 }

有些同学可能会抱怨，Getter/Setter 方式转换函数编写非常耗时而且容易漏，怎么办？

这里推荐一个 IDEA 插件：GenerateAllSetter 或者 GenerateO2O。

定义好转换函数之后，鼠标放在 convertToDTO 上使用快捷键，选择 “generate setter getter converter” 即可实现

根据目标对象的属性名适配同名源对象自动填充，注意如果有个别属性不对应，需手动转换。

另外推荐使用 mapstruct 实现对象属性映射：

使用时一行代码即可搞定：

相当于把 IDE 插件自动生成的这部分任务改为了使用注解，通过插件编译时自动生成。

4. 总结

本节主要介绍了 Java 属性映射的各种方式，介绍了每种方式背后的原理，并简单对比了各种属性映射方式的耗

时。本小节还给出了属性转换工具的推荐定义方式。希望大家在实际的开发中，除了考虑性能外，兼顾考虑安全性

和可维护性。

下节将介绍过期代码的正确处理方式。

5. 课后练习

自定义一个 OrderDO 和 OrderDTO 两个类，自定义属性，使用 StructMap 实现属性映射。

public class UserConverter {

 public static UserDTO convertToDTO(UserDO source) {
 UserDTO userDTO = new UserDTO();
 userDTO.setName(source.getName());
 userDTO.setAge(source.getAge());
 userDTO.setNickName(source.getNickName());
 userDTO.setBirthDay(source.getBirthDay());
 return userDTO;
 }

 public static UserDO convertToDO(UserDO source) {
 UserDO userDO = new UserDO();
 userDO.setId(source.getId());
 userDO.setName(source.getName());
 userDO.setAge(source.getAge());
 userDO.setNickName(source.getNickName());
 userDO.setBirthDay(source.getBirthDay());
 return userDO;
 }

 // 转换成UserVO等
}

@Mapper
public interface UserMapper {
 UserMapper INSTANCE = Mappers.getMapper(UserMapper.class);

 UserDTO userDo2Dto(UserDO userDO);
}

UserDTO userDTO = UserMapper.INSTANCE.userDo2Dto(userDO);

 05 分层领域模型使用解读 
07 过期类、属性、接口的正确处

理姿势

}

	1. 前言
	2. 常见的 Java 属性映射的工具及其原理
	2.1 常见的 Java 属性映射工具
	2.2 原理
	2.3 性能

	3. 用哪个？为什么？怎么用？
	3.1 用什么？为什么？
	3.2 怎么用？

	4. 总结
	5. 课后练习

