10 28381 IR 2 3] 7 35X

g). 2020-02-10 17:50:16

BATARE, ST AEL. BRI

1015

ol

(CFMY 283+ 4. 39 WA JLBOR T B R A 1

(2%] 24 L Enum G4, M MRARIREEARE, b ghmr.
VLT A LSRR RR IS, RN R, HWIETTEPEOA R A .

CHERE] SR AR B (AR — 1] 5 i Bl 9 A2 AL F enumBR AR SRE S

U5l] =75 BUAT DUE SRR, S H00nT DU AR, (ER R MR B EARVFRER] Mg R A s
S POJO XA

KZ 4 Java FEF7 GIXT MBS — R0, K2 B 7 DU A28 1) PR A0 g o

AN R LU LA [

o M AMERFTERERN?
o BRINHIRIE T E N TR AL (12
o N AREOAZIRFIH 2R,
o MAKIEHMRLE B HIE?

file:///read/55/article/1146
file:///read/55/article/1148

252 5B
2.1 7) iS5 H] 0

A1 2 —MELE, 3] NIE SRR, T RUB S — TR AMREGAIE SR B SR A

Mo — R R — HM R R &, A am. B, e,

MO EEE 72, SHE B E R E, JFHH N OB e N mt Rz Mt . 2
R 2 SR B B B2 A5, A SR BENS CRAE A4S, AT DL A AE T4

FAMMEE BB SN 14, A ZEM, T HMEEINZ A, IREE MR K.

2.2 B R

AT, Pedeidid B SOk > Java 116 5 Rtk

JLS 8.9 TEnum Types XM RAHAT T A/ 43, EZAALUR LA Z A

BARMESR IR abstract 5L final {21, M WIREEER, WRZAXLHIUAZERBA A Fi FH IR
MR I RO o A Hethse il

ML E Enumif B3 T35,

M2 Java ZUIFTORIERR T 52 LM B AN AT At SEE ?
A A AT R AR 2 R A«

o Enum Y] clone J77:4% final 1211, {3F enum ¥ SRS TR .
o A& LW MUES SRR T
o FEBALHLHIARAIE S5 1 A0 e MO TS Jo ¥ i) s 22 A) 552491

WX, BT E O TR SR ARG s R AL 1Y

SRR TR R, BOEIIEAR, MR switch 926, i SR BRI H 55
2.3 Java i[9

FATIEHC ILS T — M B

public enum CoinEnum
PENNY(1), NICKEL(5), DIME QUARTER

CoinEnum(int value

this.value = value

private final int value

public int value() { return value

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9

Je#wiE: javac CoinEnum.java
SRIGEIC%: javap -¢c CoinEnum
2N BRI e ARAS :

public final class com.imooc.basic.learn_enum.CoinEnum extends java.lang.Enum<com.imooc.basic.learn_enum.CoinEnum> {
public stafic final com.imooc.basic.learn_enum.CoinEnum PENNY;

public static final com.imooc.basic.learn_enum.CoinEnum NICKEL,
public static final com.imooc.basic.learn_enum.CoinEnum DIME;
public static final com.imooc.basic.learn_enum.CoinEnum QUARTER;

1156 1 AR
public static com.imooc.basic.learn_enum.CoinEnum(] values();

Code:
0: getstatic #1 /I Field $VALUES:[Lcom/imooc/basic/learn_enum/CoinEnum;
3: invokevirtual #2 /I Method "[Lcom/imooc/basic/learn_enum/CoinEnum;".clone:()Ljava/lang/Object;
6: checkcast #3 /I class "[Lcom/imooc/basic/learn_enum/CoinEnum;"
9: areturn

1155 2 JAREY
public static com.imooc.basic.learn_enum.CoinEnum valueOf(java.lang.String):

Code:
0:1dc #4 /I class com/imooc/basic/learn_enum/CoinEnum
2: aload_0
3:invokestatic #5 /I Method java/lang/Enum.valueOf:(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Enum;
6: checkcast #4 /I class com/imooc/basic/learn_enum/CoinEnum
9: areturn

public int value();

Code:
0: aload_0
1: geffield #7 /I Field value:l
4:ireturn

static {};

Code:
0: new #4 /I class com/imooc/basic/learn_enum/CoinEnum
3: dup
4:1dc #3 /I String PENNY
6:iconst_0
7:iconst_1
8: invokespecial #9 /I Method "<init>":(Ljava/lang/String;|l)lV
11: putstatic ~ #10 /I Field PENNY:Lcom/imooc/basic/learn_enum/CoinEnum;
14: new #4 /I class com/imooc/basic/learn_enum/CoinEnum
17: dup
18:1dc #11 /I String NICKEL
20: iconst_1
21:iconst_5
22: invokespecial #9 /I Method "<init>":(Ljava/lang/String;)V
25: putstatic #12 /I Field NICKEL:Lcom/imooc/basic/learn_enum/CoinEnum;
28: new #4 /I class com/imooc/basic/learn_enum/CoinEnum
31: dup
32:1dc #13 /I String DIME
34:iconst_2
35: bipush 10
37: invokespecial #9 /I Method "<init>":(Ljava/lang/String;)V
40: putstatic #14 /I Field DIME:Lcom/imooc/basic/learn_enum/CoinEnum;
43: new #4 /I class com/imooc/basic/learn_enum/CoinEnum
46: dup
47:1dc #15 /I String QUARTER
49: iconst_3

50: bipush 25
52: invokespecial #9 /I Method "<init>":(Liava/lana/Strina; IV

55: putstatic #16 /I Field QUARTER:Lcom/imooc/basic/learn_enum/CoinEnum;
58: iconst_4

59: anewarray #4 /I class com/imooc/basic/learn_enum/CoinEnum

62: dup

63: iconst_0

64: getstatic #10 /I Field PENNY:Lcom/imooc/basic/learn_enum/CoinEnum;
67: aastore

68: dup

69: iconst_1

70: getstatic #12 /I Field NICKEL:Lcom/imooc/basic/learn_enum/CoinEnum;
73: aastore

74: dup

75 iconst_2

76: getstatic #14 /I Field DIME:Lcom/imooc/basic/learn_enum/CoinEnum;

79: aastore

80: dup

81:iconst_3

82: getstatic #16 /I Field QUARTER:Lcom/imooc/basic/learn_enum/CoinEnum;
85: aastore

86: putstatic ~ #1 /I Field $VALUES:[Lcom/imooc/basic/learn_enum/CoinEnum;
89: return

=

Bk BRI K5 R com.imooc.basic.learn_enum.Coin extends java.lang.Enum<com.imooc.basic.learn_enum.C

oin>, BilE B 7 THHER K “ME 8B E REnumf B T3 7 Ik,

PN TEE PIME R0 0 J5 e A shin b final ST .

M H RN L public static final 1.

FANEATEE EBIFEISAH L 2 T P AL

Hrh—AA: public static com.imooc.basic.learn_enum.CoinEnum valueOf(java.lang.String); (JL“%5 2 4bRED”)

I3 2 i AAS
public static com.imooc.basic.learn_enum.CoinEnum valueOf(java.lang.String);

Code:
0:1dc #1 /I class com/imooc/basic/learn_enum/CoinEnum
2: aload_0
3: invokestatic #5 /I Method java/lang/Enum.valueOf:(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Enum;
6: checkcast #4 /I class com/imooc/basic/learn_enum/CoinEnum
9: areturn

XREAREIFE? UK ?

I 2 AL code WFe A 3 AbpIARID, FRATTLAEHIAM T javalang.Enum#valueOf BR%i.

FRATEHAR 2% bR U YRS «

[
* Returns the enum constant of the specified enum type with the
* specified name. The name must match exactly an identifier used
* to declare an enum constant in this type. (Extraneous whitespace
* characters are not permitted.)
* <p>Note that for a particular enum type {@code T}, the
* implicitly declared {@code public static T valueOf(String)}
* method on that enum may be used instead of this method to map
* from a name to the corresponding enum constant. All the
* constants of an enum type can be obtained by calling the
* implicit {@code public static T[] values()} method of that
* type.
* @param <T> The enum type whose constant is to be returned
* @param enumType the {@code Class} object of the enum type from which
* toreturn a constant
* @param name the name of the constant to return
* @return the enum constant of the specified enum type with the
* specified name
* @throws llegalArgumentException if the specified enum type has
* no constant with the specified name, or the specified
* class object does not represent an enum type
* @throws NullPointerException if {@code enumType} or {@code name}
* is null
* @since 1.5
*/
public static <T extends Enum<T>> T valueOf(Class<T> enumType,
String name) {
T result = enumType.enumConstantDirectory().get(name);
if (result != null)
return result;
if (name == null)
throw new NullPointerException("Name is null");
throw new llegalArgumentException(

"No enum constant " + enumType.getCanonicalName() + "." + name);

ARAETEREFATR] LASNIE -

o R BT T B AR MO 44 FR AR S B 3 N PR AR 24

o A M KA — N Fa 1 B 2 public static T value Of(String) FH SRARE Huss 4 FR R IRBUM % 3

Wik

o GRIRARSRI A AT HCE I T Mo H T LS I A RS X public static T[] values() BR &R S23 .

A — A2 _ETH 2) public static com.imooc.basic.learn_enum.CoinEnum(] values(); %% .
FATm1 2 LT R R4S, Fs N 58 F 86 HIth 4 N Java ARG R AR TH 1R 2K :

private static CoinEnum|[] $VALUES:
static {
$VALUES = new CoinEnum[4];
$VALUES[0] = PENNY;
$VALUES|1] = NICKEL;
$VALUES|2] = DIVE;
$VALUES[3] = QUARTER:

RAEE 1 A

I35 1 AR
public static com.imooc.basic.learn_enum.CoinEnum([] values();

Code:
0: getstatic #1 // Field $VALUES:[Lcom/imooc/basic/learn_enum/CoinEnum;
31 invokevirtual #2 /I Method "[Lcom/imooc/basic/learn_enum/CoinEnum;".clone:()Ljava/lang/Object;
6: checkcast #3 /I class "[Lcom/imooc/basic/learn_enum/CoinEnum;"
9: areturn

FATTAT LR B0 S s i i) ACH :

public static CoinEnum[] values() {
return $VALUES.clone();
}

DRl AR R S AR 4E 1

i armE NE YR AR, B RRKEHET DR 4R 8 v xS A2 J& v B KB i
We ?

HSGXFEBOH I T Z AR R B MO SN BT B, BB N — k). CoinEnum.values() — HIZER.
o

@Test

public void testValues(){
CoinEnum(] values1 = CoinEnum.values();
values1[0] = CoinEnum QUARTER;

CoinEnum(] values2 = CoinEnum.values();
Assert.assertEquals(values2[0],CoinEnum.PENNY);
}

i A BT A e X clone BRSNS HUET VBN R (values1) BN TEER HBTIRAEIF A 2 52 2
JF £

A XA CoinEnum.values() 3982 IR B3 T BRAGMZS B QI B 8% U % (values2)
2.4 JEA Rk

W B ORI R S, IRATTANIE . MO EE R javalang. Enum SRR, IERT, RATETLAEN B E Enum
ARG S 27 2] e (1 — e Jmal

A @E IDEA [# (% Diagrams -> Show Diagrams -> Java Class Diagram 7] LLE #| Enum 4k R KR, LK
JE PR KBS R

dp @ Comparable

=@ & compareTo(T) int

dpé Serializable

@ a Enum
@ & name String
% & ordinal int
=@ & Enum(String, int)
name() String
%9 & ordinal() int
=@ @ toString() String
%9 & equals(Object) boolean
8 hashCode() int
) clone() Object
compareTo(E) int
@ 8 valueOf(Class<T>, String) T
¥9 & finalize() void
=@ & readObject(ObjectinputStream) void
=¥ & readObjectNoData() void

5 declaringClass Class<E>

AT LAE 3S2HL T Comparable<E> Al Serializable #11.,
AR 2 BB A ?

o I3l Comparable<E> #EIRIFHARE, =N T HF
o S Serializable #2125 7 A1k,

AT SN h kR RSBS00, AR TR AR P IR).

MR RFM W E, ERBIVHAK Enum SEELT FAIE I, BATMMESSREA BAASKI IO, M
Java JFAEFF AL IF A it

Hort Enum 28 A& M
name FRHEEHIZFR.
ordinal FRME IR, HEBMAE java.utl.EnumSet M1 java.util. EnumMap 3 5T M3 (30 45 1

TR (1) 2 FT LAZK BRI FU3K A Bl 450 R s

BETRRERERFESAFEWNDREBEL: javalang.Enum#clone AT java.lang.Enum#compareTo B4k

FATAEE Enum 251 clone BREL:

I
* Throws CloneNotSupportedException. This guarantees that enums
* are never cloned, which is necessary to preserve their "singleton”

* status.
* @return (never returns)
*/

protected final Object clone() throws CloneNotSupportedException {

throw new CloneNotSupportedException();

S VRS IRATT AT AR B S B, Mg A HF clone |, Wi i I £/ CloneNotSupportedException 5%

o
HERN T RIEMEEA BB L E, 4EFF 6 PRS-

TAV G BN R A 3E TV E B B RN, AT DUl L setAccessible 4 true JERA. @R Ll jav
a.lang.reflect.Constructor#tnewlnstance RAIESEF], XFEHLHEIR T 541,

SR E 1% bR HOCIR AT AR AR 28 2 2 24 AW H4R 1llegal ArgumentException .

public T newlnstance(Object ... initargs)
throws InstantiationException, llegalAccessException,
llegalArgumentException, InvocationTargetException

11780
if ((clazz.getModifiers() & Modifier. ENUM) != 0)
throw new lllegalArgumentException("Cannot reflectively create enum objects”);

JE=L-
return inst;

TXAERR B 1 T I8 s S SRAa i Mg S 1 mT e
PR kIRATE compareTo EREIEY:

Jox
* Compares this enum with the specified object for order. Returns a
* negative integer, zero, or a positive integer as this object is less
* than, equal to, or greater than the specified object.
* Enum constants are only comparable to other enum constants of the
* same enum type. The natural order implemented by this
* method is the order in which the constants are declared.
*/
public final int compareTo(E o) {
Enum<?> other = (Enum<?7>)o;
Enum<E> self = this;
if (self.getClass() != other.getClass() && // optimization
self.getDeclaringClass() != other.getDeclaringClass())
throw new ClassCastException();
return self.ordinal - other.ordinal;

IRIEIEREANIRRS, BATRTLUE 2. HHE RIS MOsH BAEAESEI A WY -

2.5 W UK

IATATREAE WS (P rha A T i XS E W ?

Comil] =05 e BLAT LAE SOMESREY, ST DM MR, (B IR [BME A SR VR I M R A B
MR POJO X4

T RAR A A BRI AR T

ST ERAR AR W R AR S A, AT F] A AN AR Garfl) .

FATTE NI B8 ORI FTIZA il 7 -

serialTest
CoinEnum(] values = CoinEnum.values
I FF504k
serialize = SerializationUtils serialize(values

log.info("/F ¥4k JG I Z4F: " String(serialize
I ¥ 54k
CoinEnum(] values?2 = SerializationUtils.deserialize(serialize

Assert.assertTrue(Objects.deepEquals(values, values2

FAEE javalang.Enumi#tvalueOf BREEE —4T 4TI A

athrow: 1 2] {@code } {@code
@since

@NotNull C c <T ext T val
T result = enum enumConstantDirectory

(result !

v new NullPo tion("Name is null");
new IllegalArg tion(

"No enum nt " + enumType.getCanonicalName() + + na

Debug: . Enum

5 e r B Console

": RUNNING

valueOf:232, Enum (java.lang)
{ 1, Objectinpu
Objectinpt

&

RE —EEH ORI RE, BE N2
org.apache.commons.lang3.SerializationUtils#deserialize(byte[]) %
java.lang.Enum#valueOf MR . KFIET LLEd Rk FORE R SH N & T g1t
AT LAE BIMZE I 7 5 28I A javallang. Enum#valueOf SRSZHLI™.

FIHNBATAT LA PP B4 1) 51 L 1 745 s T 3

FEBIAL e B 54«

O0ur&
[Lcom.imooc.basic.learn_enum.CoinEnum; 110> Cxpr#com.imooc.basic.learn_enum.CoinEnumxrjava.lang.

EnumxptPENNY gtNICKELqtDIMEG~tQUARTER

REFTUAAE S P E R0 b 3 2 S M2 (i SR R MR 26 4 7R

AT TR T B B SISO S SR B S FRATT RS DA B TR A A o A S R B B L e
KA POJO X 52

R R RS javalang. Enum#value Of -

[
* Returns the enum constant of the specified enum type with the
* specified name. The name must match exactly an identifier used
* to declare an enum constant in this type. (Extraneous whitespace
* characters are not permitted.)
* <p>Note that for a particular enum type {@code T}, the
* implicitly declared {@code public static T valueOf(String)}
* method on that enum may be used instead of this method to map
* from a name to the corresponding enum constant. All the
* constants of an enum type can be obtained by calling the
* implicit {@code public static T[] values()} method of that
* type.
* @param <T> The enum type whose constant is to be returned
* @param enumType the {@code Class} object of the enum type from which
* toreturn a constant
* @param name the name of the constant to return
* @return the enum constant of the specified enum type with the
* specified name
* @throws lllegalArgumentException if the specified enum type has

*

no constant with the specified name, or the specified
* class object does not represent an enum type
* @throws NullPointerException if {@code enumType} or {@code name}
* is null
* @since 1.5
*/
public static <T extends Enum<T>> T valueOf(Class<T> enumType,
String name) {
T result = enumType.enumConstantDirectory().get(name);
if (result '= null)
return result;
if (name == null)
throw new NullPointerException("Name is null");
throw new lllegalArgumentException(

"No enum constant " + enumType.getCanonicalName() + "." + name);

REATLABAR T, AR A i RPC #2 01IR R B R BHES S @ k. Wi 7 DO Mes &, i
=07 (AR HARERTTD BA T JAR A, BT ARG IL?

SRR, fn R CU7 I e A AT M R, TR

SRR 4 8 javalang. Enum#tvalueOf %, LA 2% name {ENHT MR L FR

T result = enumType.enumConstantDirectory().get(name);

R result=null , MIERSTTCLEH, BHoMWH lllegalArgumentException o

WA E %R @throws lllegalArgumentException vERE, FAI T AT LAFS40:

WRMEREH IZE R, BEZRFIIRISN GO AR RN 2 %5+

PlE, 05 B SSRGS 5 B0 A 38T JAR &, A Java F BIlLI AT RES il lllegal

ArgumentException -

b1 Java AL RFIILSL, AR R SIALHESRON T AL AL B AR AR By B ARl R, DRl R AR A X —
%o

REFLUEE N CoinEnum MASFSHTHE — MR &, JEROITE MM H Bl Java FPALEISCFS, AR5 EIR
PR MR R, BT A, RE X ABUG.,

A BA U R R I i5?

B DL AL IR (B MO (U, TR AEIR BT P U ME R, FEAZE S rh 3R (I AR e (B 2% SR OM 2 s 1K
% (REERL T30 .

JFiEdfEH @see s {@link} FEiZIR Bl M I BEERE T4 AR M SR IRGEDT 30, -

[
*RRAE, 6N A ZE 2 IL{@link CoinEnum}
*/

private Integer coinValue;

SAR G R HUAL 2 B B VA
{B /R S50 A 0 RN ST MO o (R SRR W B S SR switch , AR AR ARG
fn LT CoinEnum HOMRIRMERHUERINERS, HEALIXAT,

public static CoinEnum getEnum(int value) {
switch (value) {

case 1:

return PENNY;
case 5:

return NICKEL;
case

return DIME;
case

return QUARTER,;
default:

return null;

AT S BB RN KRR 2 — B R BRI, O IR MRS . Bl — MM 4, R R suZ M.

TFAEN: XS4 ETTI XHESR A .

TAMIRMBHERRZ, RE MR, J5IRAELED

A AR S AT UF 2RO A2 1) values BRBCSEILZDIRE, 25 50 F -

public static CoinEnum getEnum(int value) {
for (CoinEnum coinEnum : CoinEnum.values()) {
if (coinEnum.value == value) {
return coinEnum;
}
}

return null;

A B S, AR5 T B MO

SR AR P I A S A AR W

IR IEA et =) e 2

ITEN, ZRBAT RN, AR TIRZ .

RAPGEBIREAR, (HRRE RIS SR ZE [— S, i 1R 2% 2 0(n).

BEARIN [R) R 2% L% B A2 — I L) S At 2 T 4 I 1]

PRI FRATTAT LU S 1 Map K 56 R A7 R, AN B MAMaprh 3kEG, 25 A0 0T -

@Getter
public enum CoinEnum {

PENNY(1), NICKEL(5), DIME(10), QUARTER(25)/* NEWONE(50)*/

CoinEnum(int value) {
this.value = value;

}

private final int value;

public int value() {
return value;

}

private static final Map<Integer, CoinEnum> cache = new HashMap<>();

static {
for (CoinEnum coinEnum : CoinEnum.values()) {
cache.put(coinEnum.getValue(), coinEnum);
}
}

public static CoinEnum getEnum(int value) {
return cache.getOrDefault(value, null);
}
}

i EERA, AR IR R 28 O(1),

TR A it 2 [e 2

T AR IEAT A LR LA i 7«

PEREAT BTt

o RRMHEER AR T B S LAY, REBA.
o GIANRME ER T AMMREMES, WRIUEABEERE, ok SRR .

AN UAAME S R R & XA e ? R AN mT LA A LR 0 AR B 2 e TR 3K 2

FATRAKL 1K

BRG] DA, WURIRATER X B R TR R B, RS

IR BN, T ERITEMEE A RN EAT I key, T EfLAILACIIZ AL
PRI AT DA g 5 0 TR S R 2 0 B T i

mport java.util. Map;

import java.util. Optional;

import java.util. Set;

import java.util.concurrent. ConcurrentHashMap;
import java.util function.Function;

public class EnumUtils {

private static final Map<Object, Object> key2EnumMap = new ConcurrentHashMap<>();

private static final Set<Class> enumSet = ConcurrentHashMap.newKeySet();

[

* AT IR B 244 75 =X

* @param enumType Ms27y

* @param keyFunction 45 M4 58 3k it key i) 6 £
* @param key UL Key

* @param <T> MeHsiz 2

* @return s

*/

public static <T extends java.lang.Enum<T>> Optional<T> getEnumWithCache(Class<T> enumType, Function<T, Object> keyFunction, Object key)

if (lenumSet.contains(enumType)) {
11 A RIS S AR B AN 50
synchronized (enumType) {
if (lenumSet.contains(enumType)) {
RGeS
enumSet.add(enumType);
11 RAE RS B AE A
for (T enumThis : enumType.getEnumConstants()) {
11 G E
String mapKey = getKey(enumType, keyFunction.apply(enumThis));

key2EnumMap.put(mapKey, enumThis);

}
return Optional.ofNullable((T) key2EnumMap.get(getKey(enumType, key)));

o

* 3K Hkey

* A MR AR AN A I Key R
*/

public stafic <T extends java.lang.Enum<T>> String getKey(Class<T> enumType, Object key) {

return enumType.getName().concat(key.toString());

o
* AN AT B SR S E 75 2

*

* @param enumType Azl

* @param keyFunction R4 M2 S5 A 3K key 1) 2R 5L

* @param key UL I Key
* @param <T> Mezgiz 2

* @return Hirzs A

*/

public static <T extends java.lang.Enum<T>> Optional<T> getEnum(Class<T> enumType, Function<T, Object> keyFunction, Object key) {
for (T enumThis : enumType.getEnumConstants()) {
if (keyFunction.apply(enumThis).equals(key)) {
return Optional.of(enumThis);

}
return Optional.empty();

E: BRI UM S, (UGS HEEE A LA w0 — Rt 0L, HAh R s RS k.

AAMEBCRSKH BT W7 S0 H BoA AR m ? 2 b AR PR s .2

st P A T A

@Test
public void test() {
intkey = 5;

CoinEnum targetEnum = CoinEnum NICKEL;

CoinEnum anEnum = CoinEnum.getEnum(key);
Assert assertEquals(targetEnum, anEnum);

1145 F 2247

Optional<CoinEnum> enumWithCache = EnumUtils.getEnum\WithCache(CoinEnum.class, CoinEnum::getValue, key);
Assert.assertTrue(enumWithCache.isPresent());

Assert.assertEquals(targetEnum, enumWithCache.get());

I AMER AT GE I

Optional<CoinEnum> enumResult = EnumUtils.getEnum(CoinEnum class, CoinEnum::getValue, key);

Assert.assertTrue(enumResult.isPresent());
Assert.assertEquals(targetEnum, enumResult.get());

] LB e) TRR, AMLBEW i 2 DI REEOR, IERESEEL TAUE IR, FIRHB M 7 rERer i

il A, AEREPARE RN ERE, AEEAE BIEAER . ARSI S R
WHRMHEE R, BHHCHESE, ZH 2RI R,

AHCE 1 I
4.1 LI THE

WETT SRR BATAT LR B, Mot s n] DA 2807 ik

enum Operation {
PLUS {
double eval(double x, double y) { return x +y; }
13
MINUS {
double eval(double x, double y) { return x - y; }
h
TIMES {
double eval(double x, double y) { return x * y; }
2
DIVIDED_BY {
double eval(double x, double y) { return x/y; }

h

/I Each constant supports an arithmetic operation
abstract double eval(double x, double y);

public static void main(String args|[]) {
double x = Double.parseDouble(args|0]);
double y = Double.parseDouble(args|[1]);
for (Operation op : Operation.values())
System.out.printin(x + " " +op +""+y+
"="+op.evalx,y));

A AFEMZE S b e SCHI R T i, TERCE B SEILZ VR R R TS 45 T e
JDK ERG s WA 2625 java.util.concurrent. TimeUnit 2854 8ALL T2 .
IXFRh S Mt 5 SR B AR if - else if - else FI—Fhf v 7 & o

4.2 LIRS

ek 25 T K b 7 SRS It i 1 DI e o

AN B> fibiE-> A > TFEG -> SR UMOIRES, RIKRE: .

FRATAT LA L T AR S -

public enum ActivityStatesEnum {
e
*IEEPIRAS
* HIR-> k> R4 > HFIR > 2R
*/
DEACLARE(1) {
@Override
ActivityStatesEnum nextState() {
return APPROVE;

h
APPROVE(2) {
@Override
ActivityStatesEnum nextState() {
return ENROLL;

2
ENROLL(3) {
@Override
ActivityStatesEnum nextState() {
return START,;

H
START(4) {
@Override
ActivityStatesEnum nextState() {
return END;

2
END(5) {
@Override
ActivityStatesEnum nextState() {
return this;

private int status;
abstract ActivityStatesEnum nextState();

ActivityStatesEnum(int status) {
this status = status;

public ActivityStatesEnum getEnum(int status) {
for (ActivityStatesEnum statesEnum : ActivityStatesEnum.values()) {
it (statesEnum status == status) {
return statesEnum;

}

return null;

XL AT LLBIT getEnum BRBCRENK2S, BB nextState SKIREUFN —ANIRE, EAEZHIDIRESHE
(IRREL, ASFe EAAAIRGHEGELL if PR E N —/MIRE, R R AR,

4.3 RIEHRFEAL &

fastjson [1J com.alibaba.fastjson.parser.Feature 2%, Ri%f#F java.lang.Enum#ordinal Ffria Fs2Il T R G R EH

P
= o

AETUNE

public enum Feature {
AutoCloseSource,
11380 1 —Hh A

Feature(){
mask = (1 << ordinal());

}
public final int mask;

public final int getMask() {
refurn mask;

}
public static boolean isEnabled(int features, Feature feature) {
return (features & feature.mask) != 0;

}

public stafic int config(int features, Feature feature, boolean state) {

if (state) {

features |= feature. mask;
}else {

features &= ~feature. mask;
}

return features;

}

public stafic int of(Feature|] features) {
if (features == null) {
return O;

}

int value = 0;

for (Feature feature: features) {
value |= feature.mask;

}

return value;

FAHNIE javalang.Enum#ordinal RosME TS . FULAT OB 1 ERAZT S MLE, WS SRRtk 1D .
R RS T LR R A, RERAFRREA A, 0 nl DU ISR A S 1 b O SR v 41

5-4%\%

ARSI 0A, BERARWYIE, B0, SRR Y6 .

FEE ST

—_

- MRS R R

. MeERR 4k & H Enum<E> , 3237 Comparable<E> 11 Serializable 17
java.util.EnumSet 1 java.util.EnumMap &2 FiFS%T Enum FIEHESE .

. MEEE AT UG A K ordinal JEYE, I E IR KB SR AT AU B m

AW N

B2 M2 AR T 22 % (Effective Java) 5 6 &= s FIEMR .

T—T KA ArrayList 287 sublist PREUFI Arrays 5[asList B,
WE &

1. WAL ASM codota K2EIIHIFIA Enum MRS« java.uti.EnumSet Al java.uti.EnumMap 1]
Hi%.

2. 179 CoinEnum MEEISHHE — MR E, JPRPHENMAE R Java FAILEISCIE, R G ER IR
RS R, HRTFAIML, WER.

SR

fif L5 Java 4 X P A%, (Java JF &K Tt 1.5.0) 1Lk, 2019
[3¢] Joshua Bloch. (Effective Java) [M]. firZf, & 75 s AU ol ki, 2019:131

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley. {Java Language Specification: Java SE 8
Edition) . 2015

	1.前言
	2.学习枚举类
	2.1 勿忘初心
	2.2 官方文档法
	2.3 Java 反汇编
	2.4 源码大法
	2.5 断点大法

	3.根据值获取枚举常量的用法
	4.枚举的高级用法
	4.1 实现计算
	4.2 实现状态机
	4.3 灵活的特性组合

	5.总结
	课后题
	参考资料

