
更新时间：2020-02-10 17:50:16

10 枚举类的正确学习方式

1.前言

《手册》第 3 、4 、39 页中有几段关于枚举类型的描述1 ：

【参考】枚举类名带上 Enum 后缀，枚举成员名称需要全大写，单词间用下划线隔开。

说明: 枚举其实就是特殊的类，域成员均为常量，且构造方法被默认强制是私有。

【推荐】如果变量值仅在一个固定范围内变化用enum类型来定义。

【强制】二方库里可以定义枚举类型，参数可以使用枚举类型，但是接口返回值不允许使用 枚举类型或者包

含枚举类型的 POJO 对象。

大多数 Java 程序员对枚举类型一知半解，大多数程序员对枚举的用法都非常简单。

本小节主要解决以下几个问题：

那么枚举类究竟是怎样的？

默认的构造方法为何是私有的？

为什么接口不要返回枚举类型。

枚举类还有哪些高级用法？

读书而不思考，等于吃饭而不消化。——波尔克

file:///read/55/article/1146
file:///read/55/article/1148

2.学习枚举类

2.1 勿忘初心

我们学习一个框架，学习一个语言特性时，可以思考一下这个框架和语言特性出现的原因。

枚举一般用来表示一组相同类型的常量，比如月份、星期、颜色等。

枚举的主要使用场景是，当需要一组固定的常量，并且编译时成员就已能确定时就应该使用枚举。2

因此枚举类型没必要多例，如果能够保证单例，则可以减少内存开销。

另外枚举为数值提供了命名，更容易理解，而且枚举更加安全，功能更加强大。

2.2 官方文档法

前面介绍过，优先通过官方文档来学习 Java 的语言特性。

JLS 8.9 节Enum Types 对枚举类型进行了详细地介绍3。主要有以下几个要点：

如果枚举类如果被 abstract 或 final 修饰，枚举如果常量重复，如果尝试实例化枚举类型都会有编译错误。

枚举类除声明的枚举常量没有其他实例。

枚举类型的 E 是Enum的直接子类。

那么 Java 是如何保证除了定义的枚举常量外没有其他实例呢？

从手册中我们可以找到原因：

Enum 的 clone 方法被 final 修饰，保证 enum 常量不会被克隆。

禁止对枚举类型的反射。

序列化机制保证反序列化时枚举类型不允许构造多个相同实例。

通过这些提示，我们就明白为何枚举类的构造函数是私有的，

文档中还介绍了枚举的成员，枚举的迭代，枚举类型作为 switch 的条件，带抽象函数的枚举常量等。

2.3 Java 反汇编

我们选取 JLS 中的一个代码片段：

public enum CoinEnum {
 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

 CoinEnum(int value) {
 this.value = value;
 }

 private final int value;
 public int value() { return value; }
}

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9

先编译： javac CoinEnum.java

然后再反汇编： javap -c CoinEnum

得到下面的反汇编后的代码：

public final class com.imooc.basic.learn_enum.CoinEnum extends java.lang.Enum<com.imooc.basic.learn_enum.CoinEnum> {
 public static final com.imooc.basic.learn_enum.CoinEnum PENNY;

 public static final com.imooc.basic.learn_enum.CoinEnum NICKEL;

 public static final com.imooc.basic.learn_enum.CoinEnum DIME;

 public static final com.imooc.basic.learn_enum.CoinEnum QUARTER;

 // 第 1 处代码
 public static com.imooc.basic.learn_enum.CoinEnum[] values();
 Code:
 0: getstatic #1 // Field $VALUES:[Lcom/imooc/basic/learn_enum/CoinEnum;
 3: invokevirtual #2 // Method "[Lcom/imooc/basic/learn_enum/CoinEnum;".clone:()Ljava/lang/Object;
 6: checkcast #3 // class "[Lcom/imooc/basic/learn_enum/CoinEnum;"
 9: areturn

 // 第 2 处代码
 public static com.imooc.basic.learn_enum.CoinEnum valueOf(java.lang.String);
 Code:
 0: ldc #4 // class com/imooc/basic/learn_enum/CoinEnum
 2: aload_0
 3: invokestatic #5 // Method java/lang/Enum.valueOf:(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Enum;
 6: checkcast #4 // class com/imooc/basic/learn_enum/CoinEnum
 9: areturn

 public int value();
 Code:
 0: aload_0
 1: getfield #7 // Field value:I
 4: ireturn

 static {};
 Code:
 0: new #4 // class com/imooc/basic/learn_enum/CoinEnum
 3: dup
 4: ldc #8 // String PENNY
 6: iconst_0
 7: iconst_1
 8: invokespecial #9 // Method "<init>":(Ljava/lang/String;II)V
 11: putstatic #10 // Field PENNY:Lcom/imooc/basic/learn_enum/CoinEnum;
 14: new #4 // class com/imooc/basic/learn_enum/CoinEnum
 17: dup
 18: ldc #11 // String NICKEL
 20: iconst_1
 21: iconst_5
 22: invokespecial #9 // Method "<init>":(Ljava/lang/String;II)V
 25: putstatic #12 // Field NICKEL:Lcom/imooc/basic/learn_enum/CoinEnum;
 28: new #4 // class com/imooc/basic/learn_enum/CoinEnum
 31: dup
 32: ldc #13 // String DIME
 34: iconst_2
 35: bipush 10
 37: invokespecial #9 // Method "<init>":(Ljava/lang/String;II)V
 40: putstatic #14 // Field DIME:Lcom/imooc/basic/learn_enum/CoinEnum;
 43: new #4 // class com/imooc/basic/learn_enum/CoinEnum
 46: dup
 47: ldc #15 // String QUARTER
 49: iconst_3
 50: bipush 25
 52: invokespecial #9 // Method "<init>":(Ljava/lang/String;II)V

通过开头位置的继承关系 com.imooc.basic.learn_enum.Coin extends java.lang.Enum<com.imooc.basic.learn_enum.C

oin>，验证了官方手册描述的 “枚举类型的 E 是Enum的直接子类。” 的说法。

我们还看到枚举类编译后被被自动加上 final 关键字。

枚举常量也会被加上 public static final 修饰。

另外我们还注意到和源码相比多了两个函数：

其中一个为： public static com.imooc.basic.learn_enum.CoinEnum valueOf(java.lang.String); （见“第 2 处代码” ）

这是怎么回事？干嘛用的呢？

通过第 2 处代码的 code 偏移为 3 处的代码，我们可以看出调用了 java.lang.Enum#valueOf 函数。

我们直接找到该函数的源码：

 52: invokespecial #9 // Method "<init>":(Ljava/lang/String;II)V
 55: putstatic #16 // Field QUARTER:Lcom/imooc/basic/learn_enum/CoinEnum;
 58: iconst_4
 59: anewarray #4 // class com/imooc/basic/learn_enum/CoinEnum
 62: dup
 63: iconst_0
 64: getstatic #10 // Field PENNY:Lcom/imooc/basic/learn_enum/CoinEnum;
 67: aastore
 68: dup
 69: iconst_1
 70: getstatic #12 // Field NICKEL:Lcom/imooc/basic/learn_enum/CoinEnum;
 73: aastore
 74: dup
 75: iconst_2
 76: getstatic #14 // Field DIME:Lcom/imooc/basic/learn_enum/CoinEnum;
 79: aastore
 80: dup
 81: iconst_3
 82: getstatic #16 // Field QUARTER:Lcom/imooc/basic/learn_enum/CoinEnum;
 85: aastore
 86: putstatic #1 // Field $VALUES:[Lcom/imooc/basic/learn_enum/CoinEnum;
 89: return
}

// 第 2 处代码
 public static com.imooc.basic.learn_enum.CoinEnum valueOf(java.lang.String);
 Code:
 0: ldc #4 // class com/imooc/basic/learn_enum/CoinEnum
 2: aload_0
 3: invokestatic #5 // Method java/lang/Enum.valueOf:(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Enum;
 6: checkcast #4 // class com/imooc/basic/learn_enum/CoinEnum
 9: areturn

根据注释我们可以知道：

该函数的功能时根据枚举名称和枚举类型找到对应的枚举常量。

所有的枚举类型有一个隐式的函数 public static T valueOf(String) 用来根据枚举名称来获取枚举常量。

如果想获取当前枚举的所有枚举常量可以通过调用隐式的 public static T[] values() 函数来实现。

另外一个就是上面提到的 public static com.imooc.basic.learn_enum.CoinEnum[] values();函数。

我们回到上面反汇编的代码，偏移为 58 到 86 的指令转为 Java 代码效果和下面很类似：

根据第 1 处代码

/**
 * Returns the enum constant of the specified enum type with the
 * specified name. The name must match exactly an identifier used
 * to declare an enum constant in this type. (Extraneous whitespace
 * characters are not permitted.)
 *
 * <p>Note that for a particular enum type {@code T}, the
 * implicitly declared {@code public static T valueOf(String)}
 * method on that enum may be used instead of this method to map
 * from a name to the corresponding enum constant. All the
 * constants of an enum type can be obtained by calling the
 * implicit {@code public static T[] values()} method of that
 * type.
 *
 * @param <T> The enum type whose constant is to be returned
 * @param enumType the {@code Class} object of the enum type from which
 * to return a constant
 * @param name the name of the constant to return
 * @return the enum constant of the specified enum type with the
 * specified name
 * @throws IllegalArgumentException if the specified enum type has
 * no constant with the specified name, or the specified
 * class object does not represent an enum type
 * @throws NullPointerException if {@code enumType} or {@code name}
 * is null
 * @since 1.5
 */
public static <T extends Enum<T>> T valueOf(Class<T> enumType,
 String name) {
 T result = enumType.enumConstantDirectory().get(name);
 if (result != null)
 return result;
 if (name == null)
 throw new NullPointerException("Name is null");
 throw new IllegalArgumentException(
 "No enum constant " + enumType.getCanonicalName() + "." + name);
}

 private static CoinEnum[] $VALUES;
 static {
 $VALUES = new CoinEnum[4];
 $VALUES[0] = PENNY;
 $VALUES[1] = NICKEL;
 $VALUES[2] = DIME;
 $VALUES[3] = QUARTER;
 }

我们可以大致还原成下面的代码：

因此整体的逻辑就很清楚了。

结合前面拷贝章节讲到的内容，接下来大家思考下一个新问题：为什么返回克隆对象而不是属性里的枚举数组

呢？

其实这样设计的主要原因是：避免枚举数组在外部进行修改，影响到下一次调用：CoinEnum.values() 的结果。

如：

通过上面代码片段可以看出：对通过 clone 函数构造的新的数组对象（values1）的某个元素重新赋值并不会影响到

原数组。

因此再次调用CoinEnum.values() 仍然会返回基于原始枚举数组创建的新的拷贝对象（values2）。

2.4 源码大法

通过官方文档和反汇编，我们知道：枚举类都是 java.lang.Enum 的子类型。正因如此，我们可以通过查看 Enum

类的源码来学习枚举的一些知识。

 // 第 1 处代码
 public static com.imooc.basic.learn_enum.CoinEnum[] values();
 Code:
 0: getstatic #1 // Field $VALUES:[Lcom/imooc/basic/learn_enum/CoinEnum;
 3: invokevirtual #2 // Method "[Lcom/imooc/basic/learn_enum/CoinEnum;".clone:()Ljava/lang/Object;
 6: checkcast #3 // class "[Lcom/imooc/basic/learn_enum/CoinEnum;"
 9: areturn

 public static CoinEnum[] values() {
 return $VALUES.clone();
 }

 @Test
 public void testValues(){
 CoinEnum[] values1 = CoinEnum.values();
 values1[0] = CoinEnum.QUARTER;

 CoinEnum[] values2 = CoinEnum.values();
 Assert.assertEquals(values2[0],CoinEnum.PENNY);
 }

我们通过 IDEA 自带的 Diagrams -> Show Diagrams -> Java Class Diagram 可以看到 Enum 类的继承关系，以及

属性和函数等信息。

可以看到实现了Comparable<E> 和 Serializable 接口。

那么为什么要实现这两个接口？

实现 Comparable<E> 接口很好理解，是为了排序。

实现 Serializable 接口是为了序列化。

前面序列化的小节中讲到：“一个类实现序列化接口，那么其子类也具备序列化的能力。”

从这里大家就会明白，正是因为其父类 Enum 实现了序列化接口，我们的枚举类没有显式实现序列化接口，使用

Java 原生序列化也并不会报错。

其中 Enum 类有两个属性**：

name 表示枚举的名称。

ordinal 表示枚举的顺序，其主要用在 java.util.EnumSet 和 java.util.EnumMap 这两种基于枚举的数据结构中。

感兴趣的同学可以继续研究这两个数据结构的用法。

接下来我带大家重点看两个函数的源码： java.lang.Enum#clone函数和 java.lang.Enum#compareTo函数。

我们查看 Enum类的 clone 函数：

通过注释和源码我们可以明确地学习到，枚举类不支持 clone , 如果调用会报 CloneNotSupportedException 异

常。

目的是为了保证枚举不能被克隆，维持单例的状态。

我们知道即使将构造方法设置为私有，也可以通过反射机制 setAccessible 为 true 后调用。普通的类可以通过 jav

a.lang.reflect.Constructor#newInstance 来构造实例，这样就破坏了单例。

然而在该函数源码中对枚举类型会作判断并报 IllegalArgumentException。

这样就防止了通过反射来构造枚举实例的可能性。

接下来我们看 compareTo 函数源码：

根据注释和源码，我们可以看到：其排序的依据是 枚举常量在枚举类的声明顺序。

/**
 * Throws CloneNotSupportedException. This guarantees that enums
 * are never cloned, which is necessary to preserve their "singleton"
 * status.
 *
 * @return (never returns)
 */
protected final Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
}

public T newInstance(Object ... initargs)
 throws InstantiationException, IllegalAccessException,
 IllegalArgumentException, InvocationTargetException
{
 // 省略..
 if ((clazz.getModifiers() & Modifier.ENUM) != 0)
 throw new IllegalArgumentException("Cannot reflectively create enum objects");

 // 省略..
 return inst;
}

/**
 * Compares this enum with the specified object for order. Returns a
 * negative integer, zero, or a positive integer as this object is less
 * than, equal to, or greater than the specified object.
 *
 * Enum constants are only comparable to other enum constants of the
 * same enum type. The natural order implemented by this
 * method is the order in which the constants are declared.
 */
public final int compareTo(E o) {
 Enum<?> other = (Enum<?>)o;
 Enum<E> self = this;
 if (self.getClass() != other.getClass() && // optimization
 self.getDeclaringClass() != other.getDeclaringClass())
 throw new ClassCastException();
 return self.ordinal - other.ordinal;
}

2.5 断点大法

那么我们想想为啥《手册》中会有下面的这个规定呢？

【强制】二方库里可以定义枚举类型，参数可以使用枚举类型，但是接口返回值不允许使用枚举类型或者包含

枚举类型的 POJO 对象。

注：

二方是指公司内部的其他部门；

二方库是指公司内部发布到中央仓库，可供公司内部其他应用依赖的库（jar包）。

我们写一个测试函数来研究这个问题：

我们在 java.lang.Enum#valueOf 函数第一行打断点。

@Test
public void serialTest() {
 CoinEnum[] values = CoinEnum.values();
 // 序列化
 byte[] serialize = SerializationUtils.serialize(values);

 log.info("序列化后的字符：{}",new String(serialize));
 // 反序列化
 CoinEnum[] values2 = SerializationUtils.deserialize(serialize);

 Assert.assertTrue(Objects.deepEquals(values, values2));
}

大家一定要自己尝试双击左下角的调用栈部分，查看从顶层调用

org.apache.commons.lang3.SerializationUtils#deserialize(byte[]) 到

java.lang.Enum#valueOf 的整个调用过程。大家还可以通过表达式来查看参数的各种属性。

可以看到枚举的反序列化是通过调用 java.lang.Enum#valueOf 来实现的**。

另外我们可以查看序列化后的字节流的字符表示形式：

序列化后的字符：

��​ur&

[Lcom.imooc.basic.learn_enum.CoinEnum;ċ���>��​xp​r#com.imooc.basic.learn_enum.CoinEnum​xr​java.lang.

Enum​xpt​PENNYq​t​NICKELq​t​DIMEq~​t​QUARTER

大致可以看出，序列化后的数据中主要包含枚举的类型和枚举名称。

我们了解了枚举的序列化和反序列化的原理后我们再思考：为什么接口返回值不允许使用枚举类型或者包含枚举

类型的 POJO 对象？

上面讲到反序列化枚举类会调用 java.lang.Enum#valueOf ：

大家可以设想一下，如果将枚举当做 RPC 接口的返回值或者返回值对象的属性。如果己方接口新增枚举常量，而

二方（公司的其他部门）没有及时升级 JAR 包，会出现什么情况？

此时，如果己方调用此接口时传入新的枚举常量，进行序列化。

反序列化时会调用到 java.lang.Enum#valueOf 函数， 此时参数 name 值为新的枚举名称。

此时 result = null ，从源码可以看出，将会抛出 IllegalArgumentException 。

通过查看该函数顶部的 @throws IllegalArgumentException 注释，我们也可以得知：

如果枚举类没有该常量，或者该反序列化的类对象并不是枚举类型则会抛出该异常。

因此，二方的枚举类添加新的常量后，如果使用方没有及时更新 JAR 包，使用 Java 反序列化时可能会抛出 Illegal

ArgumentException 。

/**
 * Returns the enum constant of the specified enum type with the
 * specified name. The name must match exactly an identifier used
 * to declare an enum constant in this type. (Extraneous whitespace
 * characters are not permitted.)
 *
 * <p>Note that for a particular enum type {@code T}, the
 * implicitly declared {@code public static T valueOf(String)}
 * method on that enum may be used instead of this method to map
 * from a name to the corresponding enum constant. All the
 * constants of an enum type can be obtained by calling the
 * implicit {@code public static T[] values()} method of that
 * type.
 *
 * @param <T> The enum type whose constant is to be returned
 * @param enumType the {@code Class} object of the enum type from which
 * to return a constant
 * @param name the name of the constant to return
 * @return the enum constant of the specified enum type with the
 * specified name
 * @throws IllegalArgumentException if the specified enum type has
 * no constant with the specified name, or the specified
 * class object does not represent an enum type
 * @throws NullPointerException if {@code enumType} or {@code name}
 * is null
 * @since 1.5
 */
 public static <T extends Enum<T>> T valueOf(Class<T> enumType,
 String name) {
 T result = enumType.enumConstantDirectory().get(name);
 if (result != null)
 return result;
 if (name == null)
 throw new NullPointerException("Name is null");
 throw new IllegalArgumentException(
 "No enum constant " + enumType.getCanonicalName() + "." + name);
 }

T result = enumType.enumConstantDirectory().get(name);

除了 Java 序列化、反序列化外，其他的序列化框架对于枚举类处理也容易出现各种错误，因此请严格遵守这一

条。

大家可以通过为 CoinEnum 枚举类新增一个枚举常量，并将新增的枚举常量通过 Java 序列化到文件中，然后在源

码中注释掉新增的枚举常量，再反序列化，来复现这个BUG。

有没有好的解决办法？

最常见的做法就是返回枚举的数值，并在返回的包中给出枚举类，在枚举类中提供通过根据值去获取枚举常量的方

法（具体做法见下文）。

并通过使用 @see 或 {@link} 在该返回的枚举的数值注释中给出指向枚举类的快捷方式，如：

3.根据值获取枚举常量的用法

偶尔会遇到有些团队实现通过枚举中的值获取枚举常量时，居然用 switch ，非常让人吃惊。

如上面的 CoinEnum 的根据值获取枚举的函数，有些人会这么写：

这样做不符合设计模式的六大原则之一的 “开闭原则”，因为如果删除、新增一个枚举常量等，也需要修改该函数。

开闭原则：对拓展开放，对修改关闭。

另外如果枚举常量较多，很容易映射错误，后期很难维护。

可以利用前面讲到的枚举的 values 函数实现该功能，参考写法如下：

/**
 * 硬币值，对应的枚举参见{@link CoinEnum}
 */
private Integer coinValue;

public static CoinEnum getEnum(int value) {
 switch (value) {
 case 1:
 return PENNY;
 case 5:
 return NICKEL;
 case 10:
 return DIME;
 case 25:
 return QUARTER;
 default:
 return null;
 }
 }

使用上面的写法，如果后面需要对枚举常量进行修改，该函数不需要改动，显然比之前好了很多。

实际工作中这种写法也很常见。

那么还有改进空间吗？

这种写法虽然挺不错，但是每次获取枚举对象都要遍历一次枚举数组，时间复杂度是O(n)。

降低时间复杂度该怎么做？一个常见的思路就是空间换时间。

因此我们可以事先通过Map 将映射关系存起来，使用时直接从Map中获取，参考代码如下：

通过上面的优化，使用时时间复杂度为 O(1)，性能有所提升。

那么还有改进的空间吗？

上面的代码还存在以下几个问题：

每个枚举类中都需要编写类似的代码，很繁琐。

引入提供上述工具的很多枚举类，如果仅使用枚举常量，也会触发静态代码块的执行。

可不可以不修改枚举就能具备这种功能？是不是可以抽取公共部分代码封装成工具类？

public static CoinEnum getEnum(int value) {
 for (CoinEnum coinEnum : CoinEnum.values()) {
 if (coinEnum.value == value) {
 return coinEnum;
 }
 }
 return null;
}

@Getter
public enum CoinEnum {
 PENNY(1), NICKEL(5), DIME(10), QUARTER(25)/*,NEWONE(50)*/;

 CoinEnum(int value) {
 this.value = value;
 }

 private final int value;

 public int value() {
 return value;
 }

 private static final Map<Integer, CoinEnum> cache = new HashMap<>();

 static {
 for (CoinEnum coinEnum : CoinEnum.values()) {
 cache.put(coinEnum.getValue(), coinEnum);
 }
 }

 public static CoinEnum getEnum(int value) {
 return cache.getOrDefault(value, null);
 }
}

我们来试一试。

首先大家可以想想，如果我们要将这部分封装成工具函数，需要哪些参数？

显然需要枚举的类型，还需要知道枚举中哪个属性作为缓存的 key，还需要传入匹配的参数。

因此可以编写如下工具类封装获取枚举对象的方法：

mport java.util.Map;
import java.util.Optional;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.function.Function;

public class EnumUtils {

 private static final Map<Object, Object> key2EnumMap = new ConcurrentHashMap<>();

 private static final Set<Class> enumSet = ConcurrentHashMap.newKeySet();

 /**
 * 带缓存的获取枚举值方式
 *
 * @param enumType 枚举类型
 * @param keyFunction 根据枚举类型获取key的函数
 * @param key 带匹配的Key
 * @param <T> 枚举泛型
 * @return 枚举类型
 */
 public static <T extends java.lang.Enum<T>> Optional<T> getEnumWithCache(Class<T> enumType, Function<T, Object> keyFunction, Object key)
{

 if (!enumSet.contains(enumType)) {
 // 不同的枚举类型相互不影响
 synchronized (enumType) {
 if (!enumSet.contains(enumType)) {
 // 添加枚举
 enumSet.add(enumType);
 // 缓存枚举键值对
 for (T enumThis : enumType.getEnumConstants()) {
 // 避免重复
 String mapKey = getKey(enumType, keyFunction.apply(enumThis));

 key2EnumMap.put(mapKey, enumThis);
 }

 }
 }
 }
 return Optional.ofNullable((T) key2EnumMap.get(getKey(enumType, key)));
 }

 /**
 * 获取key
 * 注：带上枚举路径避免不同枚举的Key 重复
 */
 public static <T extends java.lang.Enum<T>> String getKey(Class<T> enumType, Object key) {

 return enumType.getName().concat(key.toString());
 }

 /**
 * 不带缓存的获取枚举值方式
 *
 * @param enumType 枚举类型
 * @param keyFunction 根据枚举类型获取key的函数

注：上述的几种写法，仅适合枚举常量和对应的属性一对一的情况，其他场景可能要换一种写法。

另外建议大家再思考下此方案还有没有优化的空间？是否还有其他优雅解决方案？

使用也非常简单:

使用上面封装的工具类，不仅能够满足功能要求，还能实现了代码的复用，同时也做到了性能的优化。

通过上面的讲解，希望大家明白“尽信书不如无书”的道理，不要因为看到某个博客、某本书给出一个不错的写法就

认为是标准答案，要有自己的思考，要有一定的代码优化意识。

4.枚举的高级用法

4.1 实现计算

从官方文档中我们可以看到，枚举常量可以带类方法：

 * @param keyFunction 根据枚举类型获取key的函数
 * @param key 带匹配的Key
 * @param <T> 枚举泛型
 * @return 枚举类型
 */
 public static <T extends java.lang.Enum<T>> Optional<T> getEnum(Class<T> enumType, Function<T, Object> keyFunction, Object key) {
 for (T enumThis : enumType.getEnumConstants()) {
 if (keyFunction.apply(enumThis).equals(key)) {
 return Optional.of(enumThis);
 }
 }
 return Optional.empty();
 }
}

@Test
public void test() {
 int key = 5;

 CoinEnum targetEnum = CoinEnum.NICKEL;

 CoinEnum anEnum = CoinEnum.getEnum(key);
 Assert.assertEquals(targetEnum, anEnum);

 // 使用缓存
 Optional<CoinEnum> enumWithCache = EnumUtils.getEnumWithCache(CoinEnum.class, CoinEnum::getValue, key);
 Assert.assertTrue(enumWithCache.isPresent());
 Assert.assertEquals(targetEnum, enumWithCache.get());

 // 不使用缓存（遍历）
 Optional<CoinEnum> enumResult = EnumUtils.getEnum(CoinEnum.class, CoinEnum::getValue, key);
 Assert.assertTrue(enumResult.isPresent());
 Assert.assertEquals(targetEnum, enumResult.get());
}

可以在枚举类中定义抽象方法，在枚举常量中实现该方法来提供计算等功能.

JDK 源码中常见的枚举类： java.util.concurrent.TimeUnit 类就有类似的用法。

这种策略枚举方式也是替代 if - else if - else 的一种解决方案。

4.2 实现状态机

假设业务开发中需要实现状态流转的功能。

活动有：申报-> 批准-> 报名 -> 开始 -> 结束几种状态，依次流转。

我们可以通过下面的代码实现：

enum Operation {
 PLUS {
 double eval(double x, double y) { return x + y; }
 },
 MINUS {
 double eval(double x, double y) { return x - y; }
 },
 TIMES {
 double eval(double x, double y) { return x * y; }
 },
 DIVIDED_BY {
 double eval(double x, double y) { return x / y; }
 };

 // Each constant supports an arithmetic operation
 abstract double eval(double x, double y);

 public static void main(String args[]) {
 double x = Double.parseDouble(args[0]);
 double y = Double.parseDouble(args[1]);
 for (Operation op : Operation.values())
 System.out.println(x + " " + op + " " + y +
 " = " + op.eval(x, y));
 }
}

这样做的好处是可以通过 getEnum 函数获取枚举，直接通过 nextState 来获取下一个状态，更容易封装状态流转

的函数，不需要每个状态都通过 if 判断再指定下一个状态，也降低出错的概率。

4.3 灵活的特性组合

fastjson 的 com.alibaba.fastjson.parser.Feature 类，灵活使用 java.lang.Enum#ordinal 和位运算实现了灵活的特性组

合。

源码如下：

public enum ActivityStatesEnum {
 /**
 * 活动状态
 * 申报-> 批准-> 报名 -> 开始 -> 结束
 */
 DEACLARE(1) {
 @Override
 ActivityStatesEnum nextState() {
 return APPROVE;
 }
 },
 APPROVE(2) {
 @Override
 ActivityStatesEnum nextState() {
 return ENROLL;
 }
 },
 ENROLL(3) {
 @Override
 ActivityStatesEnum nextState() {
 return START;
 }
 },
 START(4) {
 @Override
 ActivityStatesEnum nextState() {
 return END;
 }
 },
 END(5) {
 @Override
 ActivityStatesEnum nextState() {
 return this;
 }
 };

 private int status;

 abstract ActivityStatesEnum nextState();

 ActivityStatesEnum(int status) {
 this.status = status;
 }

 public ActivityStatesEnum getEnum(int status) {
 for (ActivityStatesEnum statesEnum : ActivityStatesEnum.values()) {
 if (statesEnum.status == status) {
 return statesEnum;
 }
 }
 return null;
 }
}

我们知道 java.lang.Enum#ordinal 表示枚举序号。因此可以通过将 1 左移枚举序号个位置，构造各种特性的掩码。

各种特性的掩码可以任意组合，来表示不同的特征组合，也可以根据特性值反向解析出这些特性组合。

5.总结

本节使用的学习方法有，思考技术的初衷，官方文档，读源码和反汇编。

主要要点如下：

1. 枚举一般表示相同类型的常量。

2. 枚举隐式继承自 Enum<E> ，实现了Comparable<E> 和 Serializable 接口。

3. java.util.EnumSet 和 java.util.EnumMap 是两种关于 Enum 的数据结构。

4. 枚举类可以使用其 ordinal属性，通过定义抽象函数、实现接口等方式实现高级用法。

更多枚举进阶知识可参考《Effective Java》 第 6 章 枚举和注解。

 public enum Feature {

 AutoCloseSource,

 // 省略了一部分代码

 Feature(){
 mask = (1 << ordinal());
 }

 public final int mask;

 public final int getMask() {
 return mask;
 }

 public static boolean isEnabled(int features, Feature feature) {
 return (features & feature.mask) != 0;
 }

 public static int config(int features, Feature feature, boolean state) {
 if (state) {
 features |= feature.mask;
 } else {
 features &= ~feature.mask;
 }

 return features;
 }

 public static int of(Feature[] features) {
 if (features == null) {
 return 0;
 }

 int value = 0;

 for (Feature feature: features) {
 value |= feature.mask;
 }

 return value;
 }
 }

 09 当switch遇到空指针 
11 ArrayList的subList和Arrays的

asList学习

下一节将讲述 ArrayList 类的 subList 函数和 Arrays 类的 asList 函数。

课后题

1、通过前几节介绍的 codota 来学习两种和 Enum相关的数据结构 ： java.util.EnumSet 和 java.util.EnumMap 的

用法。

2、请为 CoinEnum 枚举类新增一个枚举常量，并将新增的枚举常量通过 Java 序列化到文件中，然后注释掉源码

中新增的枚举常量，再反序列化，观察效果。

参考资料

1. 阿里巴巴与 Java 社区开发者.《 Java 开发手册 1.5.0》华山版. 2019 ��

2. [美] Joshua Bloch.《Effective Java》[M]. 俞黎敏,译.背景:机械工业出版社，2019:131 ��

3. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley.《Java Language Specification: Java SE 8

Edition》. 2015 ��

}

	1.前言
	2.学习枚举类
	2.1 勿忘初心
	2.2 官方文档法
	2.3 Java 反汇编
	2.4 源码大法
	2.5 断点大法

	3.根据值获取枚举常量的用法
	4.枚举的高级用法
	4.1 实现计算
	4.2 实现状态机
	4.3 灵活的特性组合

	5.总结
	课后题
	参考资料

