
更新时间：2019-11-15 11:02:53

13 你真得了解可变参数吗?

1.前言

《手册》第 7 页 有一段关于 Java 变长参数的规约1 ：

【强制】相同参数类型，相同业务含义，才可以使用 Java 的可变参数，避免使用 Object 。说明:可变参数必

须放置在参数列表的最后。(提倡同学们尽量不用可变参数编程)

正例: public List<User> listUsers(String type, Long... ids) {...}

那么我们要思考下面几个问题：

为什么要有变长参数？

可变参数的常见用法是什么？

可变参数有哪些诡异的表现？

本节将详细探讨这些问题。

2 变长参数的思考

2.1 初步了解可变参数

我们知道可变参数（vararg）方法（又叫 variable arity method）语言特性是在 Java 5 出现的。

先相信你自己，然后别人才会相信你。——屠格涅夫

file:///read/55/article/1149
file:///read/55/article/1151

可变参数方法接受 0 到多个相同类型参数（通常都是1个及以上）。

其核心原理是：创建一个数组，数组大小为可变参数传入的元素个数，最终将数组传递给方法。

2.2 可变参数的思考

我们学习 Java 一些语言特性时，最好能够思考它为什么会出现？是为了解决什么问题？有哪些优势？没有它会有

哪些困难？等。

我们思考这样一个问题：可变参数的目的是什么?

试想一下，如果没有变长参数的语言特性，我们会怎么处理？

我们可以通过定义多个相同类型的参数进行重载。但是如果这样做如果参数数量不固定就无法实现。

我们还可以通过定义数组的参数进行重载。但是这就要求调用时要构造数组，又变成了 “定长”，而且需要增加

构造数组的代码，代码不够简洁。

由此可见，变长参数适应了不定参数个数的情况，避免了手动构造数组，提高语言的简洁性和代码的灵活性。

3.常见变长参数函数

3.1 JDK中变长参数函数举例

包括 JDK 在内的很多库都封装了很多带有变长参数的函数。

java.lang.String#format(java.lang.String, java.lang.Object...) 就是JDK 中非常常见的变长参数函数之一。

其源码如下：

根据参数名称或源码注释可知：第一个参数是格式定义，第二个参数为变长参数为前面的格式定义占位符对应的参

数。

用法如下：

由于第二个参数为变长参数，我们只需要根据前面占位符的个数填充对应个数的参数即可，非常方便。

3.2 第三方库的可变参数函数举例

再如 commons-lang3 的字符串工具类 org.apache.commons.lang3.StringUtils#isAllEmpty函数源码：

 /**
 * Returns a formatted string using the specified format string and
 * arguments.
 *
 * <p> The locale always used is the one returned by {@link
 * java.util.Locale#getDefault() Locale.getDefault()}.
 *
 * @param format
 * A format string
 *
 * @param args
 * Arguments referenced by the format specifiers in the format
 * string. If there are more arguments than format specifiers, the
 * extra arguments are ignored. The number of arguments is
 * variable and may be zero. The maximum number of arguments is
 * limited by the maximum dimension of a Java array as defined by
 * <cite>The Java™ Virtual Machine Specification</cite>.
 * The behaviour on a
 * {@code null} argument depends on the <a
 * href="../util/Formatter.html#syntax">conversion.
 *
 * @throws java.util.IllegalFormatException
 * If a format string contains an illegal syntax, a format
 * specifier that is incompatible with the given arguments,
 * insufficient arguments given the format string, or other
 * illegal conditions. For specification of all possible
 * formatting errors, see the <a
 * href="../util/Formatter.html#detail">Details section of the
 * formatter class specification.
 *
 * @return A formatted string
 *
 * @see java.util.Formatter
 * @since 1.5
 */
 public static String format(String format, Object... args) {
 return new Formatter().format(format, args).toString();
 }

@Test
public void format() {
 String pattern = "我喜欢在 %s 上学习 %s";
 String arg0 = "https://www.imooc.com/";
 String arg1 = "编程";
 String format = String.format(pattern, arg0, arg1);

 String expected = "我喜欢在 " + arg0 + " 上学习 " + arg1;
 Assert.assertEquals(expected, format);
}

该函数的功能是判断传入的参数（个数不固定）是否都是空字符串或 null。

用法非常简单：

有了变长参数支持，我们不需要根据参数的数量构造定长数组或变长的集合，用法上更加简洁。

我们还看到 org.apache.commons.lang3.StringUtils 工具类中还封装了

StringUtils#isEmpty 单个参数的判空函数。

通过函数命名和参数列表可以很容易地区分哪个是针对单参数，哪个是针对多参数（变长参数）。

这里也隐含了一个潜规则： 虽然变长参数支持 0 到多个参数，但是更多时候是用在 2 个参数及其以上的场景。

大家编写带变长参数函数时可以借鉴这种写法，即为单个参数和不定数量参数编写两个不同的函数。

如果大家平时使用三方工具包时能够留心看其源码，还会发现很多类似的变长参数函数。

4.可变参数诡异问题分析

通过上面的两个例子，我们了解了变长参数函数的优势。

/**
 * <p>Checks if all of the CharSequences are empty ("") or null.</p>
 *
 * <pre>
 * StringUtils.isAllEmpty(null) = true
 * StringUtils.isAllEmpty(null, "") = true
 * StringUtils.isAllEmpty(new String[] {}) = true
 * StringUtils.isAllEmpty(null, "foo") = false
 * StringUtils.isAllEmpty("", "bar") = false
 * StringUtils.isAllEmpty("bob", "") = false
 * StringUtils.isAllEmpty(" bob ", null) = false
 * StringUtils.isAllEmpty(" ", "bar") = false
 * StringUtils.isAllEmpty("foo", "bar") = false
 * </pre>
 *
 * @param css the CharSequences to check, may be null or empty
 * @return {@code true} if all of the CharSequences are empty or null
 * @since 3.6
 */
public static boolean isAllEmpty(final CharSequence... css) {
 if (ArrayUtils.isEmpty(css)) {
 return true;
 }
 for (final CharSequence cs : css) {
 if (isNotEmpty(cs)) {
 return false;
 }
 }
 return true;
}

@Test
public void isAllEmpty(){
 boolean result = StringUtils.isAllEmpty(null, "foo");
 Assert.assertFalse(result);
}

接下来我们通过下面一个示例并结合 commons-lang 包的布尔工具类： org.apache.commons.lang3.BooleanUtils 来

学习和分析可变参数导致的一个诡异问题。

示例代码：

请问上面程序的结果是什么呢？

相信很多人会回答 true、 true。

回答的依据应该是：示例中 main 函数调用的可变参数都是基本类型，因此和函数 3 最贴合，应该会选择函数 3 来

执行。

实际是这样的吗？

将代码输入到 IDEA，就会发现 IDEA 就会给出下面这段提示：

Ambiguous method call. Both and (boolean...) in BooleanDemo and and (Boolean...) in BooleanDemo

match.

public class BooleanDemo {

 public static void main(String[] args) {
 boolean result = and(true, true, true);
 System.out.println(result);
 justPrint(true);
 }

 // 函数1
 private static void justPrint(boolean b) {
 System.out.println(b);
 }

 // 函数2
 private static void justPrint(Boolean b) {
 System.out.println(b);
 }

 // 函数3
 private static boolean and(boolean... booleans) {
 System.out.println("boolean");
 for (boolean b : booleans) {
 if (!b) {
 return false;
 }
 }
 return true;
 }

 // 函数4
 private static boolean and(Boolean... booleans) {
 System.out.println("Boolean");
 for (Boolean b : booleans) {
 if (!b) {
 return false;
 }
 }
 return true;
 }
}

模糊的函数调用。该函数调用和 and (boolean...) 和 and (Boolean...)两个函数签名都匹配。

4.1 为啥会提示 ambiguous method call ？

很多人看到这里可能会毫无头绪，我们该怎么学习和分析这个问题呢？

按照我们的传统，我们从 JLS2中寻找答案。 我们发现其中 15.12.2 节 Compile - Time Step 2 : Determine Method

Signature 中提到：

为了兼容Java SE 5.0 之前的版本，方法签名的选择分为 3 个阶段。

第一阶段：不让自动装箱和拆箱，也不能使用可变参数的情况下选择重载。如果无法选择合适地方法，则

进入第二阶段。

由于不允许自动拆箱、拆箱和可变参数，这一条保证了Java SE 5.0 之前的函数调用的合法性。

如果在第一阶段可变参数生效，如果在一个已经声明了 m(Object) 函数的类中声明 m(Obejct...) 函数，会导

致即使有更适合的表达式（如 m(null) ） 也不会选择 m(Object) 。

第二阶段：允许自动装箱和拆箱，但是仍然排除变长参数的重载。如果仍然无法选择合适的方法，则进入

第三阶段。

这是为了保证，如果定义了定长参数的函数情况下，不会选择变长参数。

第三阶段：允许自动装箱、拆箱和变长参数的重载。

因此可见，在选择函数签名时，有以下几个阶段：

我们再回头看下示例代码。

第一阶段，选择了函数1。

第二阶段，允许自动装箱和拆箱，但是仍然不匹配可变参数的函数，仍然无法确认使用哪个 and函数，因为自动装

箱仍然没有找到 3 个 boolean 参数的 and 函数。

第三阶段，允许自动装箱和拆箱，允许匹配变长参数。

问题就出现在第三个阶段，允许匹配变长参数时就要允许自动拆箱和装箱，这样函数 3 和函数 4 都可匹配到，因此

无法通过编译。

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2

4.2 变长参数的本质是什么？

4.2.1 反编译

我们对项目进行编译，来到 IDEA的 target 目录，查看编译后的 class 文件。

也可以直接用 javac BooleanDemo.java 对该类进行编译，然后通过前面介绍的 JD-GUI 反编译工具查看。

下面是反编译后的代码：

我们可以清楚地看到，变长参数编译后内部通过数组来处理。

4.2.2 调试

我们还可以在函数 3 中打断点，来观察 booleans 这个参数对象的各种属性。

// 函数3
private static boolean and(boolean... booleans) {
 System.out.println("boolean");
 boolean[] var1 = booleans;
 int var2 = booleans.length;

 for(int var3 = 0; var3 < var2; ++var3) {
 boolean b = var1[var3];
 if (!b) {
 return false;
 }
 }

 return true;
 }

// 函数4
private static boolean and(Boolean... booleans) {
 System.out.println("Boolean");
 Boolean[] var1 = booleans;
 int var2 = booleans.length;

 for(int var3 = 0; var3 < var2; ++var3) {
 Boolean b = var1[var3];
 if (!b) {
 return false;
 }
 }

 return true;
}

通过 “variables” 可预览到参数的类型和数据，可以看到 booleans 为 boolean 类型的数组，长度为 3。

我们还可以通过在 “variables” 选项卡的 booleans 上右键，选择 “Evaluate Expression”, 然后通过调用 booleans.get

Class().isArray() 来验证其是否为数组，查看其长度等。

未来有类似的场景，大家都可以通过断点调试来观察数据，还可以通过表达式来研究对象的一些属性。

更多高级的调试技巧请参考本专栏后续章节。

4.3 如何解决？

我们如果使用 commons-lang3 的 org.apache.commons.lang3.BooleanUtils 工具类中 and 函数，也会遇到类似的

错误。

下面源码取自 commons-lang3 的 3.9版本。

该类中有两个重载的变长参数函数：

org.apache.commons.lang3.BooleanUtils#and(boolean...)

<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-lang3 -->
<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.9</version>
</dependency>

org.apache.commons.lang3.BooleanUtils#and(java.lang.Boolean...) 的源码和注释如下：

 /**
 * <p>Performs an and on a set of booleans.</p>
 *
 * <pre>
 * BooleanUtils.and(true, true) = true
 * BooleanUtils.and(false, false) = false
 * BooleanUtils.and(true, false) = false
 * BooleanUtils.and(true, true, false) = false
 * BooleanUtils.and(true, true, true) = true
 * </pre>
 *
 * @param array an array of {@code boolean}s
 * @return {@code true} if the and is successful.
 * @throws IllegalArgumentException if {@code array} is {@code null}
 * @throws IllegalArgumentException if {@code array} is empty.
 * @since 3.0.1
 */
 public static boolean and(final boolean... array) {
 // Validates input
 if (array == null) {
 throw new IllegalArgumentException("The Array must not be null");
 }
 if (array.length == 0) {
 throw new IllegalArgumentException("Array is empty");
 }
 for (final boolean element : array) {
 if (!element) {
 return false;
 }
 }
 return true;
 }

错误的原因和前面的示例所分析的一致，都是在选择函数签名时，在前两个阶段没找到匹配的函数，允许变长参数

匹配时，允许自动装箱和拆箱，却找到了两个可以匹配的函数。

我们如果直接参考两个工具函数注释上的例子，会发现编译无法通过。从这一点来看，如果注释中的用法和实际使

用无法对应，会对使用者造成极大地困扰。

那么到底如何解决这个问题呢？

正如前面讲到的，我们可以看源码的单元测试，也可以通过 codota 来学习其他优秀的开源项目关于此函数的

用法。

接下来我们实践一下。

4.3.1 查看源码的单元测试

我们拉取 commons-lang 源码，找到了 BooleanUtilsTest 关于 and 函数相关的单元测试代码。

org.apache.commons.lang3.BooleanUtilsTest#testAnd_primitive_validInput_2items

 /**
 * <p>Performs an and on an array of Booleans.</p>
 *
 * <pre>
 * BooleanUtils.and(Boolean.TRUE, Boolean.TRUE) = Boolean.TRUE
 * BooleanUtils.and(Boolean.FALSE, Boolean.FALSE) = Boolean.FALSE
 * BooleanUtils.and(Boolean.TRUE, Boolean.FALSE) = Boolean.FALSE
 * BooleanUtils.and(Boolean.TRUE, Boolean.TRUE, Boolean.TRUE) = Boolean.TRUE
 * BooleanUtils.and(Boolean.FALSE, Boolean.FALSE, Boolean.TRUE) = Boolean.FALSE
 * BooleanUtils.and(Boolean.TRUE, Boolean.FALSE, Boolean.TRUE) = Boolean.FALSE
 * </pre>
 *
 * @param array an array of {@code Boolean}s
 * @return {@code true} if the and is successful.
 * @throws IllegalArgumentException if {@code array} is {@code null}
 * @throws IllegalArgumentException if {@code array} is empty.
 * @throws IllegalArgumentException if {@code array} contains a {@code null}
 * @since 3.0.1
 */
 public static Boolean and(final Boolean... array) {
 if (array == null) {
 throw new IllegalArgumentException("The Array must not be null");
 }
 if (array.length == 0) {
 throw new IllegalArgumentException("Array is empty");
 }
 try {
 final boolean[] primitive = ArrayUtils.toPrimitive(array);
 return and(primitive) ? Boolean.TRUE : Boolean.FALSE;
 } catch (final NullPointerException ex) {
 throw new IllegalArgumentException("The array must not contain any null elements");
 }
 }

https://github.com/apache/commons-lang

通过单元测试的代码，我们发现相关的测试代码的参数都是通过数组传入。

org.apache.commons.lang3.BooleanUtils#and(java.lang.Boolean...) 相关的单测亦然。

因此我们可以放弃“变长参数”的好处，“回归自然”，我们可以仿照类似写法，使用数组传参。

4.3.2 codota大法

我们在 codota 上找到该函数的相关范例，可以很好地解决本节所提到的问题。

第一个范例是自定义工具类来包装 org.apache.commons.lang3.BooleanUtils#and(boolean...) 函数：

因为此工具类只包装了其中基本类型变长函数，如果传入基本类型的变长参数可以匹配，如果传入包装类型可以在

第二阶段拆箱匹配到该工具函数。

第二个示例也是自定义工具类，但是参数是集合，实际使用时将集合转成数组再调用 org.apache.commons.lang3.B

ooleanUtils#and(java.lang.Boolean...)。

通过该示例我们发现作者是用集合来替代不定长参数解决此问题的。

注：通过 codota 我们还可以看到该工具类的其他函数的一些常见用法。

 @Test
 public void testAnd_primitive_validInput_2items() {
 assertTrue(
 BooleanUtils.and(new boolean[] { true, true }),
 "False result for (true, true)");

 assertTrue(
 ! BooleanUtils.and(new boolean[] { false, false }),
 "True result for (false, false)");

 assertTrue(
 ! BooleanUtils.and(new boolean[] { true, false }),
 "True result for (true, false)");

 assertTrue(
 ! BooleanUtils.and(new boolean[] { false, true }),
 "True result for (false, true)");
 }
// 省略其他

https://www.codota.com/code

 12 添加注释的正确姿势 14 集合去重的正确姿势

以上两种方法都是通过自定义工具类的包装，巧妙地避免了直接调用该工具类导致函数签名选择的冲突问题。

5.总结

本文主要介绍了变长参数的主要使用场景， 变长参数使用过程中的一个诡异问题，带着大家分析该问题背后的原

因，并给出了解决该问题的方法。

希望大家遇到类似问题时，能够通过本文提供的方法来快速分析原因，并找到应对的办法。

下一节我们将讲述集合去重的正确姿势，会对不同去重方式的性能差异的原因进行分析，并对其性能进行对比。

课后练习

结合之前空指针章节所讲的内容，思考示例程序有啥隐患？该如何避免呢？

结合本节学的内容，请封装一个工具类，包装 org.apache.commons.lang3.BooleanUtils#or(java.lang.Boolean...)

函数，避免选择函数签名时的冲突问题。

参考资料

1. 阿里巴巴与 Java 社区开发者.《 Java 开发手册 1.5.0》华山版. 2019. 7 ��

2. Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley.《Java Language Specification: Java SE 8 Edition》.

2015 ��

}

	1.前言
	2 变长参数的思考
	2.1 初步了解可变参数
	2.2 可变参数的思考
	3.常见变长参数函数
	3.1 JDK中变长参数函数举例
	3.2 第三方库的可变参数函数举例

	4.可变参数诡异问题分析
	4.1 为啥会提示 ambiguous method call ？
	4.2 变长参数的本质是什么？
	4.2.1 反编译
	4.2.2 调试

	4.3 如何解决？
	4.3.1 查看源码的单元测试
	4.3.2 codota大法

	5.总结
	课后练习
	参考资料

